AQA

A-LEVEL

Biology

BIOL2 - The variety of living organisms
Mark scheme

2410
June 2015

Version: 1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Question	Marking Guidance	Mark	Comments

1(a)	1. (Carry) oxygen/glucose; 2. (To) heart muscle/tissue/cells/myocytes;	2	1. Accept: oxygenated blood 1. Ignore references to removing waste products 1. Ignore references to arteries 'pumping' blood
		2. Must be supply to heart or cardiac	

1 (b)(i)	A;	1	Accept: A on its own even if outside box Reject if two (or more) letters given

1(b)(ii)	H;	1	Accept: H on its own even if outside box Reject if two (or more) letters given

$\left.\begin{array}{|c|l|c|l|}\hline \text { 1(b)(iii) } & \text { E; } & 1 & \begin{array}{l}\text { Accept E on its own even if } \\ \text { outside box }\end{array} \\ \text { Reject if two (or more) letters } \\ \text { given }\end{array}\right]$

1(c)	(Aorta) 1. (is) close/directly linked to to the heart/ventricle / pressure is higher/is very high; 2. (Aorta has) elastic tissue; 3. (Aorta has) stretch/recoil;	3	2. Accept elasticity 2. Ignore reference to muscle 3. Q Reject: contracts/relaxes/pumps Accept: for mp 2 and mp 3, converse for small arteries if qualified by little/less

Question	Marking Guidance	Mark	Comments

2(a)	1. Females are (generally) longer/larger/bigger/up to 115(mm) / males are (generally) shorter/smaller/up to $100(\mathrm{~mm})$; 2. Females show a greater range/variation / males show a narrower range/variation;	2	1. Ignore: tall 1. Accept: females have a larger/90 modal/peak/most common value and males have a smaller/80 modal/peak/most common value 1. Accept mean length of females greater/mean length of males shorter 1. Reject: use of mean in relation to 80 mm or 90 mm 1. Reject: Most of the females are 90 mm long $/ \mathrm{most}$ of the males are 80 mm long 2. Accept: correct use of figures from the graph: the range of males is 50 to 100 and of females is 50 to 115 / the spread is 50 for males and 65 for females

2(b)(i)	2.6 to $2.7=2$ marks;;	2	
	Incorrect answer but evidence of a numerator of 24180 OR 156 x 155or denominator of $9014=1$ mark;		

2(b)(ii)	(Fewer plant species) - no mark 1. (So) few(er) habitats/niches; 2. (So) lower diversity of insects / fewer insect species/fewer insect types; 3. (So) fewer food sources / less variety of food;	3	1. Ignore habitat size 1. Q Neutral: fewer homes 2. \mathbf{Q} Neutral: fewer insects 2. Accept less variety of insects 3. Q Neutral: less food Ignore references to pesticides, farmers' actions, competition between lizards and evolution

Question	Marking Guidance	Mark	Comments
3(a)(i)	(Both) 1. Are polymers/polysaccharides/ are made of monomers/of monosaccharides;	2 max	Neutral: references to 'unbranched', insoluble, formed by condensation, flexible and rigid
	2. Contain glucose/carbon, hydrogen and oxygen	3. Contain glycosidic bonds; 4. Have 1-4 links; glucose $=$ MP 1 and $2=2$ marks	
5. Hydrogen bonding (within structure);			

3(a)(ii)	(Starch) 1. Contains $\alpha /$ alpha glucose; 2. Helical/coiled/compact/branched/not straight; 3. 1,6 bonds/ 1,6 branching; 4. Glucoses/monomers same way up; 5. No H-bonds between molecules; 6. No (micro/macro) fibres/fibrils;	2 max	Assume 'it' refers to starch Accept: converse arguments only if linked directly to cellulose 1. Accept: forms a glycosidic bonds

| 3(b)(i) | 1.No/few organelles / very little
 cytoplasm / cytoplasm at edge /
 more room/hollow/large
 vacuole/large space/thick walls;
 2.(So) easier/more flow/
 (thick/strong walls) resist pressure;1. Accept strong walls for thick
 walls |
| :---: | :--- | :---: | :--- |

$\left.\begin{array}{|c|l|l|l|}\hline \text { 3(b)(ii) } & \begin{array}{l}\text { 1. Mitochondria release energy/ ATP/ } \\ \text { site of respiration; }\end{array} & 2 & \begin{array}{l}\text { 1. Q Reject: 'produce energy' } \\ \text { 2. For active transport/uptake against } \\ \text { concentration gradient; }\end{array} \\ \text { form of ATP produce energy in }\end{array}\right\}$

4(a)(i)	Joins nucleotides (to form new strand);	1	Accept: joins sugar and phosphate/forms sugar- phosphate backbone

\(\left.$$
\begin{array}{|c|l|l|l|}\hline \text { 4(a)(ii) } & \begin{array}{l}\text { (Prokaryotic DNA) } \\
\\
\end{array} & \begin{array}{ll}\text { 1. Circular/non-linear (DNA); } \\
\text { 2. Not (associated) with proteins/ } \\
\text { histones; }\end{array} & \\
& \text { 3. No introns / no non-coding DNA; } & & \begin{array}{l}\text { Accept converse for eukaryotic } \\
\text { DNA }\end{array} \\
& & \begin{array}{l}\text { lgnore: references to nucleus, } \\
\text { binary fission, strands and } \\
\text { plasmids }\end{array}
$$

2. Accept does not form

chromosomes/chromatin\end{array}\right\}\)| 3. Accept only exons |
| :--- |
| 3. Q Neutral: no 'junk' DNA |

4(b)(i)	1. Have different genes; 2. (Sobases/triplets) are in a different sequence/order; 3. (So) different amino acid(sequence/coded for) / different protein/different polypeptide/different enzyme;	2 max	1. Reject: different alleles 2. Accept: base sequence that matters, not percentage 3. Unqualified 'different amino acids' does not gain a mark 3. Reject: references to different amino acids formed Ignore: references to mutations/exons/noncoding/introns
4(b)(ii)	(Virus DNA) 1. A does not equal T / G does not equal C; 2. (So) no base pairing; 3. (So) DNA is not double stranded/is single stranded;	2 max	1. Accept: similar for equal 1. Accept: virus has more C than $\mathrm{G} /$ has more A than T

Question	Marking Guidance	Mark	Comments
5(a)	1.Recognise/identify/attract same species; 2.Stimulates/synchronises mating/production/release of gametes; 3.Recognition/attraction of mate/opposite sex; 4.Indication of (sexual) maturity/fertility/receptivity/readiness to mate; 5. Formation of a pair bond/bond between two organisms (to have/raise young);	1. Ignore: references to letting them produce fertile offspring	

5(b)	1. Use a (real) male (with intact wings/no wing removed); 2. Determine (percentage) response (of females compared withL);	2	Mark ignoring reference to birds/ or other types of animals 1. Accept: use a real cricket, since only males sing 2. Accept: compare results withL
5(c)	1. Lowest/only 30% courtship with no song/K/ (or) courtship still occurred when no song played/K; 2. Reducedcourtship when no ticks/M / there is some courtship when no ticks/M; 3. Reduced courtship when no chirps/N / there is some courtship when no chirps/N; 4. (So) courtship must involve a visual stimulus/other factor involved; 5. Chirps more important as lowest courtship when none/N / ticks less important as similar courtship when changed/M; 6. Data only show presence and absence of chirps/ 0 and 7 chirps;	4 max	Note: throughout, for courtship accept response/stimulation/reaction Neutral: references to methodology 1. Answer must make clear there is no song/version K Accept: use of figures from the table in an explanation 5. Must make comparison to gain mark Note: 'courtship still occurred when no sound played so a visual stimulus/other factor/something else (e.g. pheromone?) must be involved' = 2 marks

Question	Marking Guidance	Mark	Comments

\(\left.\left.$$
\begin{array}{|c|l|c|l|}\hline \text { 6(b)(i) } & \begin{array}{l}\text { 1. To allow (more) light through; } \\
\text { 2. A single/few layer(s) of cells to be } \\
\text { viewed; }\end{array} & 2 & \begin{array}{l}\text { 1. Accept: transparent } \\
\text { 2. Accept: (thin) for } \\
\text { better/easier stain penetration }\end{array} \\
\hline \text { 6(b)(ii) } & \begin{array}{l}\text { 1. More/faster mitosis/division near } \\
\text { tip/at 0.2 mm; } \\
\text { 2. (Almost) no mitosis/division at/ after } \\
1.6 \mathrm{~mm} \text { from tip; } \\
\text { 3. (So) roots grow by mitosis/adding } \\
\text { new cells to the tip; }\end{array} & 2 \text { max } & \begin{array}{l}\text { Neutral: references to largest } \\
\text { mitotic index }\end{array} \\
\hline \text { Accept: cell division for mitosis }\end{array}
$$\right\} \begin{array}{l}Penalise once for references

to meiosis

3. Accept: growth occurs

at/near/just behind the tip

(of the root)\end{array}\right\}\)| Accept: converse arguments |
| :--- |

Question	Marking Guidance	Mark	Comments

$7(\mathrm{a})$ (i)	Aves;	1	

7(a)(ii)	Gallicolumba kubaryi;	1	Must have both words and in this order Must be capital G
If starts with k, award mark as			
impossible to recognise			
difference			
Ignore: underlining			
Accept: phonetic spelling			
Accept: G kubaryi (must be a			
capital/upper case G)			

7 (a)(iii)	No overlap;	1	

7(b)(i)	1. Genetic bottleneck; 2. Less genetic diversity / small(er) gene pool / less variety of alleles; 3. Individuals breed within group / do not breed with outsiders; 4. High(er) chance of inheriting allele/high(er) frequency of allele in offspring;	3 max	Q. Accept: converse arguments for the USA 1. Ignore: founder effect 2. Neutral: fewer alleles 2. Accept: fewer different alleles 3. Accept: inbreeding for 'individuals breed within group' 3. Accept: marry/mate within group 3. Accept: do not interbreed/no gene flow 4. Do not award for 'allele passed on' only, must be idea of more/greater/higher chance

7(b)(ii)	Answer of $\mathbf{3 2}(: 1)=2$ marks;;	2	Accept: $\mathbf{3 2 . 1}$ and $\mathbf{3 2 . 1 2}$ for 2 marks
	Incorrect answer but populations calculated as $\mathbf{3 0 0}$ and $\mathbf{9 6 3 6}$ $=1$ mark;	Accept: decimal places after 9636	

Question	Marking Guidance	Mark	Comments

8(a)	1. Change/mutation in base/nucleotide sequence (of DNA/gene); 2. Change in amino acid sequence/primary structure (of enzyme); 3. Change in hydrogen/ionic/disulfide bonds; 4. Change in the tertiary structure/shape; 5. Change in active site; 6. Substrate not complementary/cannot bind (to enzyme/active site) / no enzyme-substrate complexes form;	6	Q. Ignore: references to changing base-pairing Accept: affect for change, if in correct context 1. Accept: changes triplets/codons 2. Accept: different amino acid(s) coded for 2. \mathbf{Q} Reject: different amino acids produced/formed/made 3. Accept: references to sulfur bonds 4. Neutral: alters 3D structure/3D shape 6.Accept: no E S complexes form

8(b)	1.Non-SR strain falls more/SR strain falls less/up to $10(\mu \mathrm{~g} / \mathrm{cm}-3) ;$ 2. Above $10\left(\mu \mathrm{~g} / \mathrm{cm}^{-3}\right)$, SR strain levels out/offand non-SR strain continues to decrease;	$2 \max$	Must include 10 but only required once in either MP1 or MP2
3.Greater difference between strains with increasing concentration of antibiotic;	Ignore: units or absence of 1. This must be a comparative statement		
3. This must be a			
comparative statement			

8(c)	1. Division stopped (of both strains by scientist);	2	1. Reject:references to mitosis stopping
SR strain still more resistant/fewer die/none die (at higher concentrations of antibiotic);	2. Accept: SR strain and non- SR strain would be similar if resistance is due to only stopping division		
2. Need some comparison			
with non-SR			

8(d)	1. Make a competitive/non-competitive inhibitor;	$2 m a x$	2.Competitive competes with/blocks in pairs active site/non-competitive inhibitor affects/changes active site; OR 3.(Make a drug) that inhibits/denatures/destroys enzyme/stringent response; MP3 and MP4 MP2 OR 4. Give at the same time as/before an antibiotic;

8(e)	(SR strain)	3	
	1. Fewer free radicals (than non-SR);		1. Note: has to be comparative statement
	2. Produces more catalase (than nonSR);		Accept converse statements for non-SR.
	3. Catalase (might be) linked to production of fewer free radicals / breaking down/removing free radicals;		3. Accept: hydrolysis of radicals by catalase.

Question	Marking Guidance	Mark	Comments

9(a)	1.Removes (main/largest) source of oestrogen / (different) mice produce different amounts of oestrogen;	2	1. Accept: so oestrogen from ovaries not a confounding variable - idea of.
2.(Allows) oestrogen to be controlled/oestrogen to be made by aromatase only / only oestrogen made in lungs to be involved;	Reject: references to injection of aromatase.		

9(b)	1. (Anastrozole) prevents/reduces oestrogen production;	2	Note: brackets around drug names.
(Fulvestrant) stops remaining oestrogen binding /less oestrogen binds to receptors;			

9(c)	(Yes for Group T) 1. Least tumours per animal (from fig. 9) 2. Lowest (mean) tumour area/size (from fig. 10); 3. Lowest top of range; (But) 4. Means (tumour area) are similar; 5. Ranges overlap/share values so differences may not be real/treatments may be just effective in reducing tumour; 6. Range affected by outliers/ SD's would be better; 7. Done on mice / not done on women/humans; 8. Only 10 mice used per group/small sample size so may not be representative/reliable; 9. Might be side effects ; 10. Only did for 15 weeks somaximum effect of drugs may not have been seen;	5 max	Accept: 'mean values’ for tumour area. Where candidates confuse range and standard deviation, do not give credit. 5.Ignore significance

$\left.\begin{array}{|c|c|c|c|}\hline \text { 9(d) } & \begin{array}{l}\text { 1. } \begin{array}{l}\text { Tumours may be different depths / } \\ \text { area does not take depth into } \\ \text { account / tumours are 3-D/are not 2- } \\ \text { D; }\end{array} \\ \text { 2. (Measure) tumour volume/mass/ } \\ \text { weight; }\end{array} & 2 & \begin{array}{l}\text { 1. Neutral: different sizes } \\ \text { 1. Accept: height/thickness } \\ \text { for depth }\end{array} \\ \hline \text { 9(e) } & \begin{array}{l}\text { 1. Allows tumours to } \\ \text { grow/develop/form; } \\ \text { 2. (So) can investigate treatment rather } \\ \text { than prevention (of tumours)/ when } \\ \text { tumour/cancer is more advanced; }\end{array} & 2 & \begin{array}{l}\text { 1. Neutral: gives drug more } \\ \text { time to work. }\end{array} \\ \hline \text { 2. Accept: to see whether it } \\ \text { can destroy/treat/stop } \\ \text { growth of a tumour (that } \\ \text { already exists)/ to } \\ \text { allow/assess treatment of } \\ \text { a tumour }\end{array}\right\}$

9(f)	1. Unethical (not to treat patients)/ may increase probability of patients dying/getting more ill;	2	1. Reject: references to giving people tumours
2. Use normal cancer drugs/treatment;	2. Accept: named type of cancer treatment, e.. chemotherapy		

