Surname	Other n	ames
Pearson Edexcel International GCSE	Centre Number	Candidate Number
Chemistry Unit: 4CH0		
Science (Double Av Paper: 1CR	vard) 4SC0	
•	-	Paper Reference 4CH0/1CR 4SC0/1CR

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ₩ and then mark your new answer with a cross ⊠.

Information

- The total mark for this paper is 120.
- The marks for **each** question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

	<u> </u>			<u> </u>		
0	Helium 2	20 20 40 10 10 10 10 10 10 10 10	B4 Krypton 36	131 Xenon 54	B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B6 B	
7		19 Fluorine 35.5 Chtorine 47	80 Bromine 35	127 todine 53	210 At Astatine 85	
9		16 Sultur 16				
ъ		14 Nitrogen 31 31 5 15	75 AS Arsenic 33	122 Sb Antimony 51	209 Bismuth 83	
4		Carbon 6 6 Silicon 14	73 Germanium 32	€ ℃ ≣ 8	207 Lead 82	
ო		11 BB 5 5 Aluminium 13	70 Gallium 31	115 Indium 49	204 Thattium 81	
			65 Zinc 30	12 Cd Cadmium 48	201 Hg Mercury 80	
			63.5 Copper 29	108 Ag Alver	197 Au Gold 79	
			28 Nickel Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	
			59 Cobait 27	103 Rhodium 45	192 Ir Iridium 77	
			26 TO TO TO TO TO TO TO TO TO TO TO TO TO	101 RU Authenium 44	190 Osmium 76	
Group	Hydrogen 1		55 Mr Manganese 25	99 TC Technetium	186 Rte Rhenium 75	
			52 Chromium 24	96 MO Molybdenum 42	164 W Tungsten 74	
			51 Vanadium 23	93 Niobium 41	181 Ta Tantatum 73	
			48 Titanium 22	91 Zr Zirconium 40	179 Hafnium 72	
			45 Scandium 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89
2		9 Beryllium 4 Mg Mg Sta 12		88 Strontium 38		
~~		Sodium Sodium Sodium	Potassium 19	86 Rubidium 37	133 Caesium 55	223 Fr Francium 87
	Period 1	0 0	4	ۍ ک	Q	2

Relative atomic mass Symbol Name Atomic number Key

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 5 3 2 7 4 A 0 2 3 2

2

THE PERIODIC TABLE

Answer ALL questions.

1 The table gives information about some substances.

Complete the table by choosing substances from the box that match the information.

You may use each substance once, more than once, or not at all.

(6)

air	bromine	carbon dioxide	copper	
helium	iodine	methane	nitrogen	

Information	Substance
a good conductor of electricity	
a noble gas	
a mixture	
a liquid at room temperature	
used in fire extinguishers	
used as a fuel	

(Total for Question 1 = 6 marks)

P 5 3 2 7 4 A 0 4 3 2

(b) This apparatus is used to obtain pure water from the sugar solution. water out R sugar solution Q S ٥ water in Ρ pure water (i) What is the name of the process shown in the diagram? (1) A crystallisation \times distillation В \mathbf{X} **C** filtration **D** sublimation (ii) Give the name of each piece of apparatus. (4) P Q R..... S (Total for Question 2 = 8 marks)

DO NOT WRITE IN THIS AREA

OT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

	(b) (i) Which drink contains only one colouring?	
<u>s</u>		(1)
SAR	B	
	∠ -	
	D	
DO NOT WRITE IN THIS AREA	(ii) Explain which drink contains the most soluble colouring.	(2)
DO NOT WRITE IN THIS AREA	(iii) Explain which drinks contain the same colouring.	(2)
DO NOT WRITI		
-	(Total for Question 3 =	6 marks)
E A		
DO NOT WRITE IN THIS AREA		
WRIT		
S		
8		
X (

4 (a) Table 1 lists three subatomic particles.

Complete table 1 by giving the relative mass and relative charge of each subatomic particle.

(3)

Subatomic particle	Relative mass	Relative charge
proton		
neutron		
electron		

Table 1

(b) Table 2 shows the number of protons, neutrons and electrons in particles P, Q, R, S and T.

Particle	Number of protons	Number of neutrons	Number of electrons
Р	11	12	10
Q	8	8	10
R	10	10	10
S	9	10	9
Т	12	12	12

Table 2

Use table 2 to answer these questions.

Each particle, P, Q, R, S and T, may be used once, more than once or not at all.

(i) State which particle has the highest mass number.

(1)

(ii) State which particle contains two electrons in its outer shell.

DO NOT WRITE IN THIS AREA

(iii) State which particle is a negative ion.	(1)
(iv) State which particle is an atom of an element in Group 7 of the Periodic Tab	ole. (1)
(c) Which of these statements is correct for isotopes of the same element?	(1)
A they have a different atomic number	
B they have a different number of electrons	
C they have the same number of neutrons	
D they have the same number of protons	
(Total for Question 4 = 8	marks)

	1	2	Group	3	4	5	6	7	0
eriod 1			1 H Hydrogen 1						4 He Helium 2
2	7 Li Lithiu 3	9 Be m Beryllium 4		11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
3	23 Na Sodiu 11	24 Mg		27 Al Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 Cl Chlorine 17	40 Ar Argon 18
(a) (i) Th A	e element: atomic ni	s in the Periodic Table a umber	ire arranged in or	der of	increasir	ng	(1))
\times	В	mass nur	nber						
\times	C	neutron r							
\times	D	relative a	tomic mass						
(i	i) Ide	entify the e	element that is in Period	d 3 and Group 5 c	of the P	eriodic 7	able.	(1))
(i	ii) Na	me two el	ements in Period 2 that	t form acidic oxid	es.			(2))
(i			environmental probler ne atmosphere.	n that occurs whe	en acid	ic oxide	s disso	ve	
								(2))

(b) Magnesium and sulfur react to form an ionic compound.	
The equation for this reaction is	
$Mg + S \rightarrow MgS$	
(i) Write a word equation for this reaction.	
	(1)
(ii) Describe the changes in electronic configurations when magnesium reacts	
with sulfur to form the ionic compound MgS.	
Show the charges on the ions.	(3)
(iii) Calculate the mass of MgS that forms when 0.30 g of magnesium reacts com	pletely
with sulfur.	(3)
mass of MgS =	g
(Total for Question 5 = 13 n	narks)

DO NOT WRITE IN THIS AREA

P 5 3 2 7 4 A 0 1 2 3 2

6 Carbon dioxide gas forms when dilute nitric acid is added to marble chips.

The word equation for the reaction is

calcium carbonate + nitric acid \rightarrow calcium nitrate + carbon dioxide + water

(b) A student needs to prepare and collect some carbon dioxide gas, using the reaction

gas jar

(a) Write a chemical equation for the reaction.

between marble chips and dilute nitric acid.

thistle funnel

The diagram shows how he sets up his apparatus.

(2)

- (ii) The student then sets up his apparatus correctly, but uses excess dilute sulfuric acid instead of dilute nitric acid.
 The reaction produces calcium sulfate.
 Explain why the reaction stops, even though there are still marble chips and unreacted sulfuric acid in the flask.
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (2)
 (3)
 (4)
 (1)
- O NOT WRITE IN THIS AREA

B strongly alkaline

C weakly acidic

D strongly acidic

DO NOT WRITE IN THIS AREA

The atoms in the mo				
(i) State what is me	ant by the term	covalent bond	1.	(2)
(ii) Explain why carb	on dioxide has	a low boiling p	oint.	
				(2)
(iii) Complete the dia the electrons in a			to show the arrange	ment of
Show only the o	uter shell electro	ons.		(2)
	Ο	С	0	
			(Total for Question	6 = 13 marks)

WRITE IN THIS AREA

(i) Identify the fraction that is the least viscous at room temperature.	(1)
(ii) Identify the fraction that contains compounds with the smallest molecules.	(1)
(c) Fraction D contains decane that has this displayed formula.	
H H H H H H H H H H H-C-C-C-C-C-C-C-C-C-H 	
(i) Determine the molecular formula of decane.	(1)
(ii) Give the general formula of the homologous series that includes decane.	(1)
(d) $C_{14}H_{30}$ is a long chain molecule. It can undergo cracking to give octane, C_8H_{18} , and two molecules of the same alkene.	d
(i) Write an equation for this cracking process.	(2)
(ii) State two conditions used in industry for catalytic cracking.	(2)
(Total for Question 8 = 11 m	arks)

BLANK PAGE

P 5 3 2 7 4 A 0 1 8 3 2

- **9** The order of reactivity of metals can be found using different methods.
 - (a) One method is to add the metals to cold water and to dilute hydrochloric acid.

The table shows the observations made when samples of four metals are added separately to cold water and to dilute hydrochloric acid.

Metal	Observation when added to cold water	Observation when added to dilute hydrochloric acid
magnesium	bubbles produced very slowly	bubbles produced very quickly
platinum		no change
sodium	bubbles produced very quickly	not done
zinc	no change	bubbles produced slowly

(i) State the observation that is made when platinum is added to cold water.

(1)

(ii) Place the four metals in order of reactivity.	(1)
most reactive	
least reactive	
(iii) Describe a test to show that the bubbles contain hydrogen gas.	(1)
(iv) Write a word equation for the reaction between magnesium and dilute hydro	chloric acid. (1)
(v) Suggest why the reaction between sodium and dilute hydrochloric acid is not	done. (1)
	most reactive

In an experiment, a piece of zinc metal is placed in a beaker containing copper(II) sulfate solution.	
 (i) The reaction that occurs shows zinc is more reactive than copper. State two observations that would be made as the reaction occurs. 	(2)
 (ii) In a second experiment, a piece of copper metal is placed in a beaker contair nickel sulfate solution. No reaction occurs. Explain why it is not possible to determine the complete order of reactivity for copper, nickel and zinc from these two experiments. 	(2)

(c) The ionic equation for the reaction between zinc and copper(II) sulfate is

 $Zn(s) \ + \ Cu^{2+}(aq) \ \rightarrow \ Zn^{2+}(aq) \ + \ Cu(s)$

Explain why this is described as a redox reaction.

(3)

(Total for Question 9 = 12 marks)

P 5 3 2 7 4 A 0 2 2 3 2

(b) (i) Name the type of reaction that occurs between ammonia and sulfuric acid. (1) (ii) Give the name and formula of the ammonium compound Z. (2) name formula (iii) Describe a test to show that a solid sample of compound Z contains ammonium ions. (3) (c) Ammonia is an important material in the chemical industry and is often transported as a liquid in sealed containers. Suggest why it is transported in the containers as a liquid rather than as a gas. (2) 23

5 3 2 7 4 A 0 2 3

DO NOT WRITE IN THIS AREA

DT WRITE IN THIS AREA

The first stage of the process is shown in this equation.	
(i) State what is meant by the symbol ΔH .	(1)
 (ii) State why using a lower temperature would produce a greater yield of nitrogen monoxide, NO. [assume the reaction reaches a position of equilibrium] 	(1)
(iii) State why using a lower pressure would produce a greater yield of nitrogen monoxide, NO. [assume the reaction reaches a position of equilibrium]	(1)
e) Nitric acid and ammonia are used to produce ammonium nitrate. Explain why ammonium nitrate is used in agriculture.	(2)
(Total for Question 10 = 1	9 marks)
4	

BLANK PAGE

11	A student investigates the reaction between lead(II) nitrate solution and potassium ch solution.	nromate
	(a) Lead(II) nitrate solution and potassium chromate solution react to form a yellow precipitate of lead(II) chromate and potassium nitrate solution.	
	(i) Complete the equation by adding the state symbols.	(1)
	$Pb(NO_3)_2$ () + K_2CrO_4 () → $PbCrO_4$ () + $2KNO_3$ ())
	(ii) Use information from the equation to determine the charge on the chromate	ion. (1)
	(b) The student uses this method for her investigation.	

- place 5.0 cm³ potassium chromate solution in a test tube standing in a test tube rack
- add 1.0 cm³ lead(II) nitrate solution to the test tube
- allow the precipitate to settle and measure its height
- repeat the method using separate 5.0 cm³ samples of potassium chromate and adding different volumes of lead(II) nitrate solution

These are the student's results.

Volume of lead(II) nitrate solution in cm ³	Height of precipitate in cm
1.0	0.3
2.0	0.6
4.0	1.2
6.0	1.8
8.0	2.4
9.0	2.7
11.0	3.0
12.0	3.0
14.0	2.1
16.0	3.0
18.0	3.0

A

0

DO NOT WRITE IN THIS AREA

OT WRITE IN THIS AREA

NOT WRITE IN THIS AREA

	st tube at the end of the investigation.	(3)
	ve a test to show that the potassium nitrate solution in the test tube	
CC	ntains potassium ions.	(2)

(d) The student does a similar experiment to produce a precipitate of lead iodide, Pbl₂, using the following reaction.

 $Pb(NO_3)_2 + 2KI \rightarrow PbI_2 + 2KNO_3$

He finds that 5.0 cm^3 of 0.90 mol/dm^3 KI solution reacts with 8.0 cm^3 of Pb(NO₃)₂ solution.

Calculate the concentration, in mol/dm³, of the $Pb(NO_3)_2$ solution.

(3)

concentration of $Pb(NO_3)_2$ solution = mol/dm³

(Total for Question 11 = 18 marks)

TOTAL FOR PAPER = 120 MARKS

BLANK PAGE

BLANK PAGE

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

