

Mark Scheme (Results)

November 2020

Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020 Publications Code 4CH1_2C_2011_MS All the material in this publication is copyright © Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number		Answer	Notes	Marks
1	(a)	B filtration is the correct answer because it will enable sand to be separated from salt solution		1 comp
		A is not correct because crystallisation will not enable sand to be separated from salt solution		
		C is not correct because fractional distillation will not enable sand to be separated from salt solution		
		D is not correct because simple distillation will not enable sand to be separated from salt solution		
	(b) (i	X is a thermometer		3 cler
		Y is a (Liebig) condenser		cici
		Z is a beaker		
	(i) salt		1 cler

Total for Q1 = 5

Marks
1 comp
2 grad
5
3
exp
1 exp

Total for Q2 = 7

Question number		on er	Answer	Notes	Marks
3	(a)	(i)	magnesium	ALLOW Mg	1 cler
		(ii)	explanation including the following points M1 silver		2 grad
			M2 because it is the least reactive (of the metals)	ALLOW it is very unreactive	
		(b)	explanation including the following points: M1 Method 1/ heating the metal oxide/lead(II) oxide with carbon		3 exp
			M2 (because) lead is less reactive than iron (and iron is obtained from iron oxide by carbon extraction)	ALLOW carbon is more reactive than lead ACCEPT reverse arguments	
			M3 2PbO + C \rightarrow 2Pb + CO ₂	ALLOW PbO + CO \rightarrow Pb + CO ₂ ALLOW PbO + C \rightarrow Pb +CO	

Question number		Answer	Notes	Marks
3	(c)	Explanation containing the following points		4
		Pure metal:	REJECT molecules once	ехр
		M1 (particles/ions/atoms are same size in a regular arrangement so) layers can easily slide over each other		
		Alloy:		
		M2 diagram of alloy structure showing minimum of three layers with at least one different sized circle		
		M3 (having different sized particles/ions/atoms) disrupts/breaks up regular arrangement OWTTE	ALLOW disrupts the lattice / layers / rows (of particles/ions /atoms)	
		M4 so hard(er) for layers to slide over each other	ALLOW layers cannot slide over each other	
			IGNORE references to strength/breaking of forces/(metallic) bonds	

Total for Q3 = 10

C	Questi numb	ion er	Answer	Notes	Marks
4	(a)		CH₃OH	IGNORE displayed formula	1 grad
	(b)	(i)	fermentation		1 cler
		(ii)	Explanation including four from		4
			M1 fermentation/reaction/respiration needs to be anaerobic	ALLOW M1 in air ethanol would react with oxygen / be oxidised	exp
			M2 because in air / aerobic conditions ethanol not produced	M2 in air ethanol would form ethanoic acid /carboxylic acid/vinegar	
			M3 because in air / aerobic conditions CO_2 and H_2O are produced		
			M4 (if temperature above 40 °C/too high) enzymes (in yeast) become denatured/lose their structure OWTTE		
			M5 causing fermentation/reaction to slow down /stop	ALLOW reference to optimum temperature (between 30 °C and 40 °C)	

$\begin{array}{c c} 4 & (c) & (i) \\ & H \\ H \\ - C \\ M1 \\ H \\ - C \\ M1 \\ H \\ - C \\ M1 \\ H \\ - C \\ M2 \\ C_{3}H_{6}O_{2} \\ M3 butanoic acid \\ (ii) \\ (iii) \\ (acid acts as) a catalyst/to speed up reaction \\ (iii) \\ H \\ - C \\$	Question number		ion er	Answer	Notes	Marks
(ii)carboxylic (acids)1 grad(d)(i)(acid acts as) a catalyst/to speed up reactionIGNORE references to activation energy1 grad(ii) $H \to H \to H \to C \to C \to C \to C \to H \to H \to H \to $	4	(c)	(i)	H - C - C - H $H - H - C - H$ $H - H -$		3 grad
(d) (i) (acid acts as) a catalyst/to speed up reaction IGNORE references to activation energy 1 grad (ii) H H Q Q Q (iii) H H Q Q Q H H Q Q Q Q M1 H H Q Q Q M1 ester linkage M2 rest of molecule fully correct M2 DEP M1 Q Q (iii) M1 (Property:) distinctive/sweet/fruity smell ALLOW volatile 2 exp M2 used in perfumes/flavourings ALLOW volatile ALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes) Q			(ii)	carboxylic (acids)		1 grad
(ii) $ \begin{array}{c} H \\ H \\ - C \\ - C$		(d)	(i)	(acid acts as) a catalyst/to speed up reaction	IGNORE references to activation energy	1 grad
M1 ester linkage M2 rest of molecule fully correctM2 DEP M1(iii)M1 (Property:) distinctive/sweet/fruity smell M2 used in perfumes/flavouringsALLOW volatile eg in making soaps/ in solvents (for paints/varnishes)2 exp			(ii)	$\begin{array}{c} H \\ H \\ H \\ - C \\ - H \\$		2 exp
M2 rest of molecule fully correctM2 DEP M1(iii)M1 (Property:) distinctive/sweet/fruity smellALLOW volatileM2 used in perfumes/flavouringsALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes)2 				M1 ester linkage		
(iii) M1 (Property:) distinctive/sweet/fruity smell ALLOW volatile 2 M2 used in perfumes/flavourings ALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes)				M2 rest of molecule fully correct	M2 DEP M1	
M2 used in perfumes/flavourings ALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes)			(iii)	M1 (Property:) distinctive/sweet/fruity smell	ALLOW volatile	2
				M2 used in perfumes/flavourings	ALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes)	exp

Question		ion er	Answer	Notes	Marks
5	(a)		Explanation including following points M1 (unsaturated because) contains (carbon to carbon) double bond(s)	ALLOW contains C=C	3 grad
			M2 (hydrocarbon because) contains (the elements/atoms) carbon and hydrogen	REJECT molecules	
			M3 only	M3 DEP on carbon and hydrogen	
	(b)	(i)	from orange to colourless	ALLOW yellow for orange or any combination of orange/yellow IGNORE clear	1 grad
		(ii)	calculation including following steps		4
			M1 calculation of energy involved in bond breaking in reactants		Ехр
			M2 calculation of energy involved in bond making in products		
			M3 evaluation of difference	ECF from M1 and M2	
			M4 correct answer and sign		
			Example calculation		
			M1 2(612) + 1(348) + 6(412) + 2(193) OR 4430	IGNORE signs in M1 and M2	
			M2 3(348) + 6(412) + 4(276) OR 4620	ACCEPT 2(612) + 2(193) OR 1610 for M1 and 2(348) + 4(276) OR 1800 for M2	
			M3 (4620 - 4430 =) 190	IGNORE sign ACCEPT (1800 - 1610 =)	
			M4 -190	M3 M4 FCF from M1 and	
				M2	
				If M1 > M2 answer for M4 must be positive If M1 < M2 answer for M4 must be negative	
				-190 with or without working scores 4 (+) 190 with or without working scores 3	

(c)	(i)	$2C_4H_6 + 7O_2 \rightarrow 2C + 4CO + 2CO_2 + 6H_2O$		1 Exp
	(ii)	Explanation including	M2 DEP M1 correct or	2 Exp
		M1 CO/carbon monoxide	missing	схр
		M2 is poisonous/toxic/reduces capacity of blood to carry oxygen OWTTE	ACCEPT prevents blood from carrying oxygen OWTTE ALLOW correct explanation in terms of haemoglobin eg	
		OR	prevents haemoglobin	
		M1 CO2/carbon dioxide	forms	
		M2 is a greenhouse gas/contributes to global warming/ contributes to climate change OWTTE	Carboxynaemoglobin	
	(iii)			_4
		Energy $2C_4H_6 + 11O_2$ Activation Energy $3CO_2 + 6H_2O$ M1 horizontal line below level of reactants with $8CO_2 + 6H_2O$ M2 profile curve rising from reactants level to form "hump" and then falling down to products level		Ехр
		M3 activation energy correctly shown and labelled	ALLOW double headed arrow REJECT arrow pointing downwards	
		M4 $ riangle H$ correctly shown and labelled	ALLOW double headed arrow REJECT arrow pointing upwards ALLOW -3446 for $\triangle H$ label an endothermic reaction profile can score M2 M3 M4 ECF	
			Total for O5 = 15	

Answer	Notes	Marks
zinc would react with sulfuric acid/solution X	IGNORE zinc is too reactive	1 grad
bubbles	ALLOW fizzing / effervescence IGNORE gas evolved IGNORE incorrectly named gas	1 grad
 B a burning splint gives a squeaky pop is correct because this is the test for hydrogen A is incorrect because a glowing splint relights is not the test for hydrogen C is incorrect because a burning splint goes out is not the test for hydrogen D is incorrect because limewater turns cloudy is not the test for hydrogen 		1 comp
description including		
M1 add barium chloride/BaCl2	ACCEPT barium nitrate/Ba(NO ₃) ₂ IGNORE references to adding (dilute) HCl/HNO ₃ REJECT add H ₂ SO ₄	2 Grad
M2 white ppt forms	M2 DEP M1	
(graduated) pipette	ALLOW burette	1 Cler
	zinc would react with sulfuric acid/solution X bubbles B a burning splint gives a squeaky pop is correct because this is the test for hydrogen A is incorrect because a glowing splint relights is not the test for hydrogen C is incorrect because a burning splint goes out is not the test for hydrogen D is incorrect because limewater turns cloudy is not the test for hydrogen M1 add barium chloride/BaCl2 M2 white ppt forms (graduated) pipette	AnswerNoteszinc would react with sulfuric acid/solution XIGNORE zinc is too reactivebubblesALLOW fizzing / effervescence IGNORE gas evolved IGNORE incorrectly named gasBa burning splint gives a squeaky pop is correct because this is the test for hydrogenAis incorrect because a glowing splint relights is not the test for hydrogenDis incorrect because a burning splint goes out is not the test for hydrogenDis incorrect because limewater turns cloudy is not the test for hydrogenM1 add barium chloride/BaCl2ACCEPT barium nitrate/Ba(NO ₃); IGNORE references to adding (dilute) HZ/HNO3 REJECT add H2SO4M2 white ppt forms (graduated) pipetteM2 DEP M1ALLOW burette

(ii)	calculation with following steps		
	M1 setting out of how to calculate n(KOH)		
	M2 evaluation		
	Example calculation		
	M1 n(KOH) = 0.125 x 25 ÷ 1000		
	$M2 = 0.003125 / 3.125 \times 10^{-3}$	ALLOW any number of sig figs except one	2 Exp
		If no division by 1000 giving answer of 3.125 award 1 mark	
		correct answer with no working scores 2	

(iii)	calculation with following steps		3
	M1 calculate n (H2SO4) = M2 from (i) ÷ 2		Exp
	M2 calculate vol $H_2SO_4 = (M1 \times 1000) \div 0.10$		
	M3 evaluation of volume		
	Example calculation		
	M1 0.003125 ÷ 2 = 0.0015625 / 1.5625 ×10 ⁻³		
	M2 0.0015625 x 1000 ÷ 0.10	Mark ECF from M1	
	M3 = 15.625/15.63/15.6 /16 (cm ³)	Mark ECF from M2	
		ALLOW any number of sig figs except one	
		correct answer with no working scores 3	
		Do not penalise not multiplying by 1000 in (iii) if they have not divided by 1000 in (ii)	
		31.25/31.3/31 scores 2 62.5/63 scores 2	

Total for Q6 = 11

Question number	Answer	Notes	Marks
7 (a)	calculation with following steps		3 Exp
	M1 calculation of $n(K_2CO_3)$		Lλp
	M2 deduction of n(CO ₂) and vol(CO ₂) by multiplying by 24 (dm ³)		
	M3 correct evaluation of volume in cm ³		
	Example calculation		
	M1 n(K ₂ CO ₃) = 6.9 ÷ 138 OR 0.05		
	M2 vol(CO ₂) = 0.05 x 24 (dm ³)	Mark ECF from M1	
	M3 1200 (cm ³)	correct answer with no working scores 3	
		1.2 scores 2 marks	
(b) (i)	M1 higher yield of CO	ACCEPT more CO is produced	2 Exp
	M2 because (equilibrium shifts to the right as the forward) reaction is endothermic	IGNORE references to Le Chatelier's Principle eg increasing temperature favours the forward reaction	
		M2 DEP M1 correct or missing	
(ii)	M1 no effect (on yield) OWTTE		2 Exp
	M2 because equal numbers of moles/molecules (of gas) on both sides	M2 DEP M1 correct or missing	

Total for Q7 = 7

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom