Mark Scheme (Results)

November 2020
Pearson Edexcel International GCSE In Chemistry (4CH1) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Autumn 2020
Publications Code 4CH1_2C_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
3 (a) (i)	magnesium	ALLOW Mg	$\begin{gathered} 1 \\ \text { cler } \end{gathered}$
(ii)	explanation including the following points M1 silver		$\begin{gathered} 2 \\ \text { grad } \end{gathered}$
	M2 because it is the least reactive (of the metals)	ALLOW it is very unreactive	
(b)	explanation including the following points: M1 Method 1/ heating the metal oxide/lead(II) oxide with carbon		$\begin{gathered} 3 \\ \text { exp } \end{gathered}$
	M2 (because) lead is less reactive than iron (and iron is obtained from iron oxide by carbon extraction) $\mathrm{M} 32 \mathrm{PbO}+\mathrm{C} \rightarrow 2 \mathrm{~Pb}+\mathrm{CO}_{2}$	ALLOW carbon is more reactive than lead ACCEPT reverse arguments $\begin{aligned} & \text { ALLOW PbO }+\mathrm{CO} \rightarrow \mathrm{~Pb} \\ & +\mathrm{CO}_{2} \\ & \mathrm{ALLOW} \mathrm{PbO}+\mathrm{C} \rightarrow \mathrm{~Pb} \\ & +\mathrm{CO} \end{aligned}$	

Question number (a)	Answer	Notes	Marks
(b) (i)	fermentation	IGNORE displayed formula	
(ii)	Explanation including four from M1 fermentation/reaction/respiration needs to be anaerobic	ALLOW M1 in air ethanol would react with oxygen $/$ be oxidised	exp

Question number	Answer	Notes	Marks
4 (c) (i) (ii)			3 grad
(d) (i) (ii) (iii)	(acid acts as) a catalyst/to speed up reaction M1 ester linkage M2 rest of molecule fully correct M1 (Property:) distinctive/sweet/fruity smell M2 used in perfumes/flavourings	IGNORE references to activation energy M2 DEP M1 ALLOW volatile ALLOW any correct use eg in making soaps/ in solvents (for paints/varnishes)	$\begin{gathered} 2 \\ \exp \end{gathered}$

(ii)	calculation with following steps M1 setting out of how to calculate $\mathrm{n}(\mathrm{KOH})$ M2 evaluation Example calculation $M 1 \mathrm{n}(\mathrm{KOH})=0.125 \times 25 \div 1000$ $M 2=0.003125 / 3.125 \times 10^{-3}$	ALLOW any number of sig figs except one	Exp If no division by 1000 giving answer of 3.125 award 1 mark
		correct answer with no working scores 2	

(iii)	calculation with following steps M1 calculate $\mathrm{n}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=\mathrm{M} 2$ from (i) $\div 2$ M2 calculate vol $\mathrm{H}_{2} \mathrm{SO}_{4}=(\mathrm{M} 1 \times 1000) \div 0.10$ M3 evaluation of volume Example calculation M1 $0.003125 \div 2=0.0015625 / 1.5625 \times 10^{-3}$ M2 $0.0015625 \times 1000 \div 0.10$ $M 3=15.625 / 15.63 / 15.6 / 16\left(\mathrm{~cm}^{3}\right)$	Mark ECF from M1 Mark ECF from M2 ALLOW any number of sig figs except one correct answer with no working scores 3 Do not penalise not multiplying by 1000 in (iii) if they have not divided by 1000 in (ii) 31.25/31.3/31 scores 2 62.5/63 scores 2	$\begin{gathered} 3 \\ \operatorname{Exp} \end{gathered}$

Total for Q6 = 11

Question number	Answer	Notes	Marks
7 (a)	calculation with following steps M1 calculation of $\mathrm{n}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ M2 deduction of $\mathrm{n}\left(\mathrm{CO}_{2}\right)$ and $\operatorname{vol}\left(\mathrm{CO}_{2}\right)$ by multiplying by $24\left(\mathrm{dm}^{3}\right)$ M3 correct evaluation of volume in cm^{3} Example calculation $\mathrm{M} 1 \mathrm{n}\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)=6.9 \div 138$ OR 0.05 $\mathrm{M} 2 \operatorname{vol}\left(\mathrm{CO}_{2}\right)=0.05 \times 24\left(\mathrm{dm}^{3}\right)$ M3 $1200\left(\mathrm{~cm}^{3}\right)$	Mark ECF from M1 correct answer with no working scores 3 1.2 scores 2 marks	$\begin{gathered} 3 \\ \operatorname{Exp} \end{gathered}$
(b) (i) (ii)	M1 higher yield of CO M2 because (equilibrium shifts to the right as the forward) reaction is endothermic M1 no effect (on yield) OWTTE M2 because equal numbers of moles/molecules (of gas) on both sides	ACCEPT more CO is produced IGNORE references to Le Chatelier's Principle eg increasing temperature favours the forward reaction M2 DEP M1 correct or missing M2 DEP M1 correct or missing	$\begin{gathered} 2 \\ \operatorname{Exp} \end{gathered}$ $\begin{gathered} 2 \\ \operatorname{Exp} \end{gathered}$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom

