Mark Scheme 4752 June 2005

Section A

		1 0	1 2	1
1	$1 + \frac{3}{2} x^{\frac{1}{2}}$	1+3	B2 for $kx^{\frac{1}{2}}$, or M1 for $x^{\frac{3}{2}}$ seen before	4
			differentiation or B1 ft their $x^{\frac{3}{2}}$ correctly differentiated	4
2	1170	4	B1 for $a = 11$ and B1 for $d = 5$ or 20^{th}	
			term = 106 and	
			M1 for 20/2[their (a) + their(106)] or	
			20/2[2their (a)+ (20-1)×their(d)]	
			OR M1 for 6×20 and M2 for	4
			$5\left(\frac{20}{2}[20+1]\right)$ o.e.	
3	$\pm\sqrt{13/4}$	3	B2 for (-) $\sqrt{13/4}$ or $\pm \sqrt{\frac{13}{16}}$	3
			or M1 for $\sqrt{13}$ or $\sin^2\theta + \cos^2\theta = 1$ used	
4	$x + x^{-1}$ soi	B1		
	$y' = 1 - 1/x^2$	B1	$1 - x^2$ is acceptable	
	subs $x = 1$ to get $y' = 0$	B1 M1ft	Or solving $1 - x^2 = 0$ to obtain $x = 1$ or checking y' before and after $x = 1$	
	$y''=2x^3$ attempted	A1	Valid conclusion	
	Stating $y'' > 0$ so min cao		First quadrant sketch scores B2	5
5	(i) 1	1		
	(ii) -2	2	M1 for $1/9=3^{-2}$ or $\log(1) - \log(3^2)$	
	(iii) 6log x	2	base not requd; M1 for $5 \log x$ or $\log(x^6)$	5
6	Correct curve thro' y axis	G1	y, y' & y" all positive	
	(0, 1) indicated on sketch or table	G1	independent	
	5.64	3	B2 for other versions of 5.64(3) or B1	
			for other ans 5.6 to 5.7	
			or M1 for $x \log 2 = \log 50$ and M1 for	
			$x = \log 50 \div \log 2$	5
7	$y = 7 - 3/x^2 \text{ oe}$	5	B3 for $(y =) -3/x^2 + c$ [B1 for each of	
			k/x^2 , $k = -6/2$ and $+c$] and M1 for	5
			substituting $(1, 4)$ in their attempted integration with $+ c$, the constant of	
			integration with + c, the constant of	
8	(i) 66° or 66.4 or 66.5	B1	Allow 1.16 or 73.8	
	293.58 to 3 or more sf cao	B1	Lost for extras in range. Ignore extras	
	(ii) stratah (ana yese)	1	outside the range	
	(ii) stretch (one way) parallel to the <i>x</i> -axis	1 1	Horizontal, from y axis, in x axis, oe	
	sf 0.5	1	Tronzontai, from y axis, fir x axis, to	5
				36

Section B

0	:	$3x^2 - 20x + 12$	2	B1 if one error "+c" is an error	
9	i	$\int 3x - 20x + 12$		BY IT OHE CITOF +C IS All CITOF	2
	ii	y - 64 = -16(x - 2) o.e.	4	M1 for subst $x = 2$ in their y'	
		eg $y = -16x + 96$		A1 for $y' = -16$ and B1 for $y = 64$	4
		2	Da	D1 5 (% 2) 0 40 24 72 0 1	
	iii	Factorising $f(x) \equiv (x+2)(x-6)^2$	B3	or B1 for $f(-2) = -8-40-24+72 = 0$ and B1 for $f'(6) = 0$ and	3
			M2	B1 for $f(6)=0$ and B1dep for $f(6)=0$	3
		OR Expanding $(x+2)(x-6)^2$	E1	Brace for <i>f</i> (0)=0	
	iv	$\frac{x^4}{4} - \frac{10x^3}{3} + 6x^2 + 72x$	B2	-1 for each error	
			N / 1	Must have into anotad ((a)	
		value at $(x = 6)$ ~ value at $(x = -2)$	M1 A1	Must have integrated $f(x)$	
		341(.3) cao	711		4
10	i	AB = 7.8(0), 7.798 to 7.799 seen	2	M1 for correct use of sine rule	
				For long methods M1A1 for art 7.8	
		area = 52.2 to 52.3	2	M1 for $[2\times][0.5\times]$ their AB \times 11.4 \times	4
				sin 36°	
	ii	$\tan 0.91 = ST/12.6$	M1		
		$ST = 12.6 \times \tan 0.91$ and	E1	Accept 16.2 if ST is explicit but for	
		completion (16.208)		long methods with pa check that their	
		area OSTR = $[2\times][0.5\times]12.6\times$	M1	explicit expression = 16.2	
		their(16.2) nb 204	1,11		
		area of sector = $0.5 \times 12.6^2 \times 1.82$	M1	oe using degrees	
		=144.47	A1	soi by correct ans Accept 144, 144.5	
		Logo = 59.6 to 60.0	A1		
		$arc = 12.6 \times 1.82 [=22.9]$	M1	oe using degrees	
		perimeter = 55.3 to 55.4	A1		8
	ļ	-	1		
11	i	81	1		1
	ii	$(1x)3^{n-1}$	1		1
		(/-			
	iii	(GP with) $a = 1$ and $r = 3$	M1	or M1 for = $1+3+9++3^{n-1}$	
		clear correct use GP sum formula	M1		2
	iv	(A) 6 www	2	M1 for $364 = (3^n - 1)/2$	
	1 *	(B) 243	$\begin{vmatrix} z \\ 1 \end{vmatrix}$	$\frac{1011101304 - (3 - 1)/2}{1}$	3
		(, =			
	v	their (ii) > 900	M1ft		
		$(y-1)\log 3 > \log 900$	M1ft	E E	
		$y - 1 > \log 900 \div \log 3$	M1 B1	base	4
		y = 8 cao	DΙ		4