

Chemistry A

Advanced GCE

Unit F324: Rings, Polymers and Analysis

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

Mark Scheme

ALLOW Kekulé structures throughout

Question	Answer	Mark	Guidance
1 (b)	CH_3 CH_3 CH_3 O_2N NO_2 NO_2 V NO_2	2	ALLOW any correct unambiguous structures ALLOW NO ₂ – Note: connectivity is NOT being assessed in this part
1 (c)	1st stage isomer: isomer 3 \checkmark product: \downarrow_{H_2N} \downarrow_{NH_2} \checkmark reagents: Sn AND (conc) HCl \checkmark equation: \downarrow_{H_2N} \downarrow_{H_3} \downarrow_{H_3} \downarrow_{H_2N} \downarrow_{H_2N		 ANNOTATIONS MUST BE USED ALLOW structure of isomer 3 shown separately OR in equation ALLOW structure of product shown separately OR in equation ALLOW correct name (3,5-diaminomethylbenzene) IGNORE incorrect name DO NOT ALLOW CH₃C₆H₃(NH₂)₂ ALLOW Zn + HCl/H₂ + metal catalyst/LiAlH₄/Na in ethanol IGNORE NaBH₄ ALLOW Sn and HCl followed by NaOH DO NOT ALLOW Sn and HCl and NaOH IF isomer 3 OR product are given in equation but not shown previously then credit here Also credit reagents here if shown (<i>eg</i> above arrow) ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous

Question	Answer	Mark	Guidance
(C) (i)	2nd stage organic compound: HOOC–CH₂–COOH ✓	6	DO NOT ALLOW molecular formula ALLOW name of compound: propanedioic acid OR propane-1,3-dioic acid ALLOW absence of 'e' after 'propan' ALLOW acyl dichloride: CIOC-CH ₂ -COCI ALLOW cyclic acid anhydride of propanedioic acid: CH_2 O=C C=C C=O
	<i>type of polymer</i> : polyamide ✓		ALLOW Nylon or Kevlar DO NOT ALLOW polypeptide DO NOT ALLOW amide
	Total	12	

0	Question		Answer	Mark	Guidance
2	(a)		propane-1,2,3-triol ✓	1	 ALLOW absence of 'e' after 'propan' ALLOW 1,2,3-propanetriol ALLOW absence of hyphens 1, 2 and 3 must be clearly separated: ALLOW full stops: 1.2.3 OR spaces: 1 2 3 DO NOT ALLOW 123
2	(b)	(i)	methanol OR ethanol AND renewable ✓	1	BOTH points required for the mark ALLOW correct structural OR displayed OR skeletal formula DO NOT ALLOW molecular formulae ALLOW easy/cheap to manufacture/produce as alternative for
					renewable/from plants/from fermentation/burns more easily/efficiently
	(b)	(ii)	equilibrium shifts to right ✓	1	ALLOW equilibrium shifts in forward direction ALLOW more products form ALLOW greater yield OR fully reacts OR goes to completion DO NOT ALLOW improves atom economy

C	Question	Answer	Mark	Guidance
2	(c)	$\begin{array}{c} CH_3CH_2COOH + CH_3CH_2OH \rightarrow CH_3CH_2COOCH_2CH_3 + \\ H_2O\checkmark \end{array}$		ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae
		$(CH_{3}CH_{2}CO)_{2}O + CH_{3}CH_{2}OH \rightarrow CH_{3}CH_{2}COOCH_{2}CH_{3} + CH_{3}CH_{2}COOH$	2	ALLOW further esterification, <i>ie</i> $(CH_3CH_2CO)_2O + 2CH_3CH_2OH$ $\rightarrow 2CH_3CH_2COOCH_2CH_3 + H_2O$
				ALLOW linear formula for anhydride, ie
				CH ₃ CH ₂ COOCOCH ₂ CH ₃
				If incorrect carboxylic acid/anhydride/alcohol is used, ALLOW ECF for second equation

C	Quest	ion	Answer			Mark	Guidance
2	(d)		Α	В	С		Mark A, B and C
			НО-СН ₂ -СН ₂ -СООН	H_2C	О Ш О-СН ₂ -СН ₂ -СН ₂ -С		 independently ie A can be any of the alternatives in the 1st column B can be any of the alternatives in the 2nd column
			OR	OR	OR		• C can be any of the
			СН ₃ НО—СН—СН ₂ -СООН	H ₂ CC HCO H ₃ C	CH ₃ O O—CH—CH ₂ —C	3	alternatives in the 3rd column ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of
			OR	OR	OR		formulae as long as
			С ₂ Н ₅ НО—СН—СООН	C2H5 CH-C	С ₂ H ₅ О О—СН—С		unambiguous DO NOT ALLOW molecular formulae
			OR	OR	OR		
			СН ₃ НО—СН ₂ —СН—СООН		CH ₃ O │ ║ O−CH ₂ −−CH−−C		ALLOW correct names for A, B and C For B accept diester For C,
			OR	OR	OR		IGNORE 'n' OR brackets
			СН ₃ но—с—соон сн ₃	H ₃ C H ₃ C C C C	$\begin{array}{c} CH_3 & O \\ & \\ CH_3 \\ CH_3 \end{array}$		(even if wrong); ALLOW solid side bonds Minimum is one correct repeat unit. Polymer must be open at both ends
					Total	8	

Mark Scheme

	Questio	Answer	Mark	Guidance
3	(a)	observation: silver OR Ag \checkmark type of reaction: oxidation \checkmark organic product: H ₃ C CH ₃ OH CH ₃ \checkmark	3	ALLOW black OR grey ALLOW redox ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae ALLOW carboxylate, -COO ⁻
3	(b)	$\begin{array}{c} H \\ H $		ANNOTATIONS MUST BE USED ALLOW mechanism showing curly arrows from lone pair on H ⁻ and O ⁻ of intermediate
		1 mark for correct dipole on C=O AND curly arrow from double bond to $O^{\delta-} \checkmark$ 1 mark for correct intermediate with negative charge on O AND curly arrow from O ⁻ to H of H–O–H AND curly arrow from H–O to O of H–O–H \checkmark 1 mark for correct organic product \checkmark	4	Dipole not required on H–O–H DO NOT ALLOW incorrect dipole on H–O–H ALLOW 1 mark for correct intermediate with '–' charge on O AND curly arrow from O ⁻ to H ⁺ IGNORE missing OH ⁻ DO NOT ALLOW incorrect second product

(Quest	ion	Answer	Mark	Guidance
4	(a)	(i)	$CICH(CH_3)COOH + 3NH_3 \rightarrow H_2NCH(CH_3)COO^- + NH_4^+ + NH_4CI$	1	ALLOW use of two NH ₃ : $CICH(CH_3)COOH + 2NH_3 \rightarrow H_2NCH(CH_3)COO^- + NH_4^+ + HCI ALLOW products as above OR H_2NCH(CH_3)COOH + NH_4CI ALLOW use of one NH3: CICH(CH_3)COOH + NH_3 \rightarrow H_2NCH(CH_3)COO^- + H^+ + HCI ALLOW products as above OR H_2NCH(CH_3)COOH + HCI For alternatives below, for NH_4CI, ALLOW NH_4^+CI OR NH_4^+ + CI for HCI, ALLOW H^+CI OR H^+ + CI for HCI, ALLOW H^+CI OR H^+ + CI for H_2NCH(CH_3)COO^- + NH_4^+ ALLOW H_2NCH(CH_3)COO^- NH_4^+ OR H_2NCH(CH_3)COONH_4 ALLOW R in equation in place of CH3 (either or both sides) ALLOW combination of formulae as long as unambiguous DO NOT ALLOW molecular formulae$
	(a)	(ii)	CH ₃ CH ₃ HOOCCNCCOOH H H ✓	1	ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW product from carboxylate ion as nucleophile: $\begin{array}{c} CH_3 & CH_3 \\ H_2N & C & COO & C & COOH \\ H & H & H \end{array}$

January 2011

Question	Answer	Mark	Guidance
4 (b) (i)	O OR HO O V	1	DO NOT ALLOW any structure containing C OR H (except in OH)
(b) (ii)	CH ₂ COOH H ₂ N H H H C H H C H C H C C H C C H C C H C C C H C C C H C C C H C	2	 ALL bond linkages must be correct, eg the chiral C must be linked to the C of the COOH, the C of the CH₂COOH and the N of the NH₂ (connectivity is being tested) The 2nd mark is for the mirror image of an amino acid. This could be any amino acid EXCEPT glycine DO NOT penalise connectivity more than once ALLOW R in equation in place of CH₂COOH (either or both sides) Each structure must have four central bonds, with at least two wedges, one in; one out For bond into paper, accept:
4 (c)	 Disadvantages Any two from: (one stereoisomer might have harmful) side effects ✓ reduces the (pharmacological) activity/effectiveness ✓ cost OR difficulty in separating stereoisomers ✓ Synthesis of a single optical isomer Any two from: using enzymes or bacteria ✓ using a chiral catalyst OR transition metal complex/transition metal catalyst ✓ using chiral synthesis OR chiral starting material OR natural amino acid ✓ 	2 max	ALLOW biological catalyst ALLOW 'chiral pool' OR L-amino acids OR D-sugars
	Total	8	

C	Quest	tion	Answer	Mark	Guidance
5	(a)	(i)	Adsorption ✓ (onto the stationary phase)		ALLOW adsorbtion or adsorb(s) or adsorbed spelled correctly at least once
			Quality of Written Communication 'Adsorption' must be spelled correctly	1	DO NOT ALLOW anything that begins with ab
	(a)	(ii)	0.2 ✓	1	ALLOW any value in the range 0.1 – 0.3 IGNORE significant figures DO NOT ALLOW fraction/percent as final answer
	(a)	(iii)	Spot may contain more than one compound/component ✓	1	ALLOW compounds have similar <i>R</i> _f values/adsorptions OR compounds have not (fully) separated OR B is spread over a large region OR compounds are similar IGNORE retention times
5	(b)	(i)	GC separates the components/compounds		ALLOW chromatography for GC ALLOW they have different retention times
			MS is compared to a database/reference ✓	1	 ALLOW MS analyses compounds/gives structural information/gives different mass spectra ALLOW (uses) fragmentation patterns/fragments/peaks/parts of the compound DO NOT ALLOW MS identifies compounds (in question) DO NOT ALLOW molecular ion alone/M_r etc.
		(ii)	nerol and geraniol AND they are stereoisomers OR primary alcohols ✓	1	Compounds AND reason required for the mark ALLOW they are <i>E</i> / <i>Z</i> isomers OR <i>cis-trans</i> isomers
		(!!!)			ALLOW straight-chain alcohols OR unsaturated alcohols
		(iii)	stereoisomers have the same structural formula AND		BOTH points required for the mark
			different 3D arrangements ✓	1	ALLOW different arrangements in space
		(iv)		1	Circle must include the correct C=C double bond AND must not extend further than the adjacent atoms in the main chain, ie limit is:

F324

(Quest	ion	Answer	Mark	Guidance
	(b)	(v)	→ → → → → → → → → → → → → → → → → → →	2	ALL THREE chiral centres required for 2 marks ANY TWO chiral centres required for 1 mark If more than three asterisks are shown, mark incorrect asterisk(s) first
5	(c)		Correctly calculates amount of myrcene = 34/136 OR 0.25 (mol) ✓ Correctly calculates 60% yield of menthol = 0.25 × 60/100 OR 0.15 (mol) ✓ Correctly calculates mass of menthol = 0.15 × 156 = 23.4 (g) ✓	3	ANNOTATIONS MUST BE USED ALLOW amount of myrcene × 60/100 ALLOW amount of menthol × 156 ALLOW alternative approach based on reacting masses (using same ECF principles as above): correctly calculates mass of myrcene that could be obtained from 34 g myrcene: mass = $34 \times 156/136 = 39$ (g) $\times 156 \checkmark$; ÷ 136 \checkmark 60% of 39 g = $39 \times 60/100 = 23.4$ (g) \checkmark ALLOW final answer to 2 or more significant figures correctly rounded Correct answer of 23.4 (g) with no working scores all 3 marks
			Total	12	

Mark Scheme

	Quest	tion	Answer	Mark	Guidance
6	Quest (a)	tion	Answer a singlet for position 2 OR a singlet because it has no adjacent H's✓ A triplet for positions 4 and 6 OR a triplet because it has 2 adjacent H's ✓ A quintet for position 5 OR a quintet because it has four adjacent H's ✓	Mark 3	GuidanceANNOTATIONS MUST BE USEDALLOW a response that implies a single peak OR 'no splitting'ALLOW a response that implies a splitting into threeDO NOT ALLOW implications of more than one tripletALLOW 'pentet'OR a response that implies a splitting into fiveOR multipletALLOW 1 mark for singlet and triplet andquintet/pentet/multiplet with no identification of protons
					 Any suggestion that the oxygens cause a splitting scores a maximum of 2 marks. All 3 remaining splitting patterns correct 2 marks. Any 2 correct 1 mark. IF number labels for protons in diagram are not identified, ALLOW identification by chemical shifts for 2 marks max: singlet at 3.3–4.2 AND a triplet at 3.3–4.2 ✓ quintet/pentet/multiplet at 0.7–2.0 ✓ Clear and unambiguous identification of the protons other than by position number should be credited, <i>ie</i> 'CH ₂ between two oxygens'
			Quality of Written Communication singlet OR triplet OR quintet OR pentet OR multiplet (see Guidance) must be spelled correctly at least once		

Question	Answer	Mark	Guidance
6 (b)	ANY 5 marks plus correct structure (in box)		ANNOTATIONS MUST BE USED
	Molecular ion/M ⁺ peak at (<i>m</i> / <i>z</i> of) 106 \checkmark		ALLOW molecular mass OR relative molecular mass
	Fragment peak at 91 is C_6H_4 – $CH_3^+C_6H_5$ – $CH_2^+ \checkmark$		ALLOW C_6H_4 – CH_3/C_6H_5 – CH_2 ALLOW peak at 91 represents loss of CH_3
	Molecular formula is C_8H_{10} (or implied, <i>ie</i> any one of the structures below) \checkmark		ALLOW correct structural OR displayed OR skeletal formula ALLOW combination of formulae as long as unambiguous ALLOW a correct name eg a dimethylbenzene
	$\begin{array}{c c} CH_3 & CH_3 & CH_3 & C_2H_5 \\ \hline \\ CH_3 & CH_3 & CH_3 & C_2H_5 \\ \hline \\ CH_3 & C$		ALL FOUR structures needed for 1 mark ALLOW correct names
	 ✓ ¹³C NMR spectrum shows 5 C environments ✓ Peak near 20 is a C attached at another carbon, C–C 		ALLOW NMR spectrum shows five different types of carbon DO NOT ALLOW 'NMR spectrum has five peaks' – the mark is for realising what the peaks show, not for just describing the spectrum
	OR peaks at ~125–140 for aromatic Cs ✓		

	Question		Answer	Mark	Guidance
6			Number of peaks for other three isomers matched to structures: Any 2 correct for 2 marks $\checkmark \checkmark$ 1 correct for 1 mark \checkmark $\downarrow \downarrow $		ALLOW 'carbon environments' for peaks
			Correct structure shown: CH ₃ CH ₃ ✓	6	
			Total	9	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2011

