

GCE

Chemistry A

Unit F321: Atoms, Bonds and Groups

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
РОТ	Power of 10 error
▲	Omission mark
RE	Rounding error
SF	Error in number of significant figures
✓	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Q	uesti	on	Answer	Mark	Guidance
1	(a)	(i)	Atom(s) of an element AND with different numbers of neutrons ✓	1	ALLOW: Atom(s) with same number of protons/atomic number IGNORE 'different mass number' IGNORE 'same number of electrons' DO NOT ALLOW 'different number of electrons'
1	(a)	(ii)	42 p AND 56 n AND 42 e ✓ ⁹⁶ Mo ²⁺ AND 42 p ✓	2	Mark by row
1	(b)		¹² C OR C-12 OR carbon 12 OR carbon-12 \checkmark	1	IGNORE 1/12 th
1	(c)	(i)	oxidised: Hydrogen/H/H₂ from 0 to +1 ✓ reduced: Molybdenum/Mo from +6 to 0 ✓	2	 ALLOW 6+ OR 6 OR 1+ OR 1 IGNORE MoO₃ ALLOW 1 mark for elements AND all oxidation numbers correct, but Mo in oxidised line and H in reduced line IGNORE numbers around equation <i>(treat as rough working)</i>
1	(c)	(ii)	Check answer on the answer line. If answer = 1440 (cm ³) award 3 marks If answer = 480 (cm ³) award 2 marks (no multiplying by 3) $n(MoO_3) = \frac{2.878}{143.9} = 0.02(00) \text{ (mol) } \checkmark$ $n(H_2) = 0.02(00) \times 3 = 0.06(00) \text{ (mol) } \checkmark$ volume of H ₂ = 0.06(00) × 24000 = 1440 (cm ³) \checkmark	3	ALLOW calculator value or rounding to three significant figures or more but IGNORE 'trailing zeroes' ALLOW ECF ALLOW ECF from $n(H_2)$ OR $n(MoO_3)$ if ×3 missing \rightarrow 480 (cm ³) Likely 2 marks

Q	uesti	on	Answer	Mark	Guidance
1	(d)		(1s²) 2s² 2p ⁶ 3s² 3p ⁶ 3d ⁷ 4s² ✓	1	ALLOW 4s ² 3d ⁷ IGNORE 1s ² seen twice ALLOW upper case D, etc and subscripts, e.g3S ₂ 3P ⁶
1	(e)		Check the answer on the answer line. If answer = 7 award 3 marks $n(H_2O) = \frac{2.52}{18.0} = 0.14(0) \text{ (mol) } \checkmark$ $n(CoSO_4) = \frac{5.62 - 2.52}{155.0} = \frac{3.10}{155.0} = 0.02(00) \text{ (mol) } \checkmark$ $x = \frac{n(H_2O)}{n(CoSO_4)} = \frac{0.14}{0.02} = 7 \checkmark$	3	ALLOW calculator value or rounding to three significant figures or more but IGNORE 'trailing zeroes' Common error No subtracting 2.52 for 2nd mark $\rightarrow = \frac{5.62}{155.0} = 0.0363 \text{ (mol)} \times$ $x = \frac{n(H_2O)}{n(CoSO_4)} = \frac{0.14}{0.0363} = 3.86 = 4 \checkmark$ x = 4 likely to be 2 marks
			Total	13	

Q	uesti	on				Answ	er				Mark	Guidance
2	(a)	(i)	Г				0:01		010		2	
				molecule		NOl_3	51014		$C_{l_2}O$			
				number of bo pairs of elect	onding rons	3	4	3	2	\checkmark		1 mark per row
				number of lor of electrons	ne pairs	1	0	0	2	\checkmark		'0' '0' required.
										1		
2	(a)	(ii)			1						6	
				molecule	shape		angle		polar	(√)		
				NC <i>l</i> ₃	pyramida		107(°)		TIC	ĸ		For pyramidal, ALLOW 'trigonal pyramid' For non-linear, ALLOW 'bent' or 'V-shaped'
				SiC14	tetrahedra	.I	109.5(°	')				
				BCl ₃	trigonal planar		120(°)					For 1077, ALLOW 108 – 108 For 109.5°, ALLOW 109 – 110 For 104.5°, ALLOW 104 – 105
				Cl ₂ O	non-linea		104.5(°	')	TIC	K		
			Shar Bono Pola	Any two corre Any two corre Any three corre All four corre d angle colun Any three cor All four corre rity column √	$4 \neq 0$ ect = 1 mark rrect = 2 ma ct = 3 marks nn $4 \neq 0$ rrect = 1 ma ct = 2 marks	rks rk						

C	Questi	on	Answer	Mark	Guidance
2	(b)		Dipole At least one H ^{δ+} and one N ^{δ−} on BOTH NH ₃ molecules ✓ Hydrogen bond	2	Only credit is dipoles on NH ₃ molecules
			Labelled hydrogen bond between H in one NH ₃ molecule and lone pair of N in adjacent NH ₃ molecule \checkmark Hydrogen bond δ_{+}		ALLOW H-bond as label Hydrogen bond must hit the lone pair
2	(c)	(i)	Check the answer on the answer line. If answer = H_3BO_3 OR BO_3H_3 award 2 marks <i>Mole ratio</i> $B = \frac{17.48}{10.8} \qquad O = \frac{77.67}{16.0} \qquad H = \frac{4.85}{1.0}$ OR 1.62 4.85 4.85 \checkmark <i>Empirical formula</i> $BO_3H_3 \checkmark$	2	ALLOW 1.61 for 1.62 IGNORE B(OH) ₃ Not an empirical formula 1
2	(c)	(ii)	BC $l_3(g)$ + 3H ₂ O(I) → H ₃ BO ₃ (aq) + 3HC $l(aq)$ Products: H ₃ BO ₃ AND HCI ONLY ✓ Complete equation AND correctly balanced AND state symbols ✓	2	for H ₃ BO ₃ , ALLOW BO ₃ H ₃ OR B(OH) ₃ ALLOW ECF from empirical formula in 2c(i) ALLOW Multiples
			Total	14	

Q	Question					Answer			Mark	Guidance		
3	(a)			•	1			•			2	
			Na	Mg	Al	Si	Р	S	Cl			
			98	649	660	1410	44	113	-101			
			G	G	G	G	S	S	S	\checkmark		Mark by row
			TICK	TICK	TICK					\checkmark		IGNORE tick in Si
3	(b)		FULL AN BE USED ORA thro <i>Forces/bc</i> <i>Cl</i> ₂ I ANI Si h ANI <i>Strength c</i> van are <i>Melting pc</i> Less (Net	NOTATIO bughout onds has van de D between as covale D between D between of forces der Waals weaker th oints s energy r eds 'energy	er Waals' f n molecul nt bonds n atoms √ s' forces/in an covaler need to bre gy, not 'mo	TICKS, C	ROSS	ES, COI r √ ces rine √	N, etc M	UST	4	Throughout, ALLOW for forces: attractions OR interactions OR bonds QWC : molecule(s) or intermolecular must be spelled correctly IGNORE C <i>l</i> ₂ has covalent bonds In Si, ALLOW forces between bonded pair and nuclei for 'forces between atoms' - ALLOW van der Waals' forces are weak AND covalent bonds are strong (anywhere) DO NOT ALLOW unless in the context of correct particles: vdW (Cl ₂) and covalent (Si)
										 ALLOW for van der Waals', vdW induced/temporary/ instantaneous dipole forces 		

Q	uesti	on	Answer	Mark	Guidance
					London forces
3	(c)	(i)	Magnesium ions 2+ $2+$ $2+$ $2+$ $2+2+$ $2+$ $2+$ $2+2+$ $2+$ $2+$ $2+Delocalised electron$	2	The regular arrangement must have minimum of two rows of 2+ ions with two 2+ ions per row
			Eatrice Regular arrangement of Mg ²⁺ ions AND electrons shown as – OR e ⁻ ✓ Electron labels Delocalised electrons √		ALLOW for Mg ²⁺ label: Positive ions/cations AND 2+ within circle QWC: delocalised spelt correctly.
3	(c)	(ii)	ORA throughout	4	FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED
			Outer electrons Mg has more outer OR delocalised electrons ✓		ALLOW Mg has 2 outer electrons AND Na has 1 outer electron
			Cation charge Mg ions have a greater charge ✓ Forces Forces/attraction/metallic bonds between + ions and electrons ✓		ALLOW Mg ²⁺ AND Na ⁺ ALLOW 'charge density' for 'charge'
			Comparison of strength of force and melting point More energy to break stronger forces/attraction/bonds in Mg ✓		DO NOT ALLOW unless in context of correct particles: metallic bonding/+ ions and electrons
3	(d)		A repeating pattern/trend across period(s) \checkmark	1	ALLOW an example of repeating trend across periods, e.g. atomic radius; ionisation energy
			Total	13	

F321

C	uesti	on	Answer	Mark	Guidance		
4	(a)		Check the answers on the answer lines. If answers = 87.7 OR 87.8 AND Sr award 3 marks $n(OH^{-})$ in 400 cm ³ $= \frac{6.56 \times 10^{-3} \times 400}{1000} = 2.62(4) \times 10^{-3} \text{ (mol) } \checkmark$ n(M) $= \frac{2.624 \times 10^{-3}}{2} = 1.312 \times 10^{-3} \text{ (mol) } \checkmark$ Molar mass of M = $\frac{0.115}{1.312 \times 10^{-3}} = 87.7 \text{ (g mol}^{-1})$ AND M = Strontium OR Sr \checkmark ALLOW alternative method for first two marks: Concentration M ²⁺ ions $= \frac{6.56 \times 10^{-3}}{2} = 3.28 \times 10^{-3} \text{ (mol dm}^{-3})$ n(M) in 400 cm ³	3	ALLOW calculator value or rounding to three significant figures or more but IGNORE 'trailing zeroes' ALLOW ECF from $n(OH^-)$ ALLOW Ar of 87.8 (from 1.31×10^{-3} for $n(M)$) ALLOW ECF BUT M must be Group 2 metal with A_r closest to calculated molar mass		
4	(b)	(i)	$= \frac{3.28 \times 10^{-5} \times 400}{1000} = 1.312 \times 10^{-3} \text{ (mol)}$ Turns yellow OR orange OR brown \checkmark	1	AND $M = Ca \checkmark$ ALLOW shades of yellow, orange or brown IGNORE bubbles (Cl ₂ is being bubbled into solution) DO NOT ALLOW purple DO NOT ALLOW observation containing a precipitate		

C	Question		Answer	Mark	Guidance
4	(b)	(ii)	$Cl_2(g) + 2l^-(aq) \rightarrow l_2(aq) + 2Cl^-(aq) \checkmark$ State symbols required <i>Check state symbol for l</i> ₂ <i>first (commonest error)</i>	1	ALLOW multiples ALLOW Cl ₂ (aq)
4	(c)	(i)	$\mathbf{A} = \text{BaO} \checkmark \mathbf{B} = \text{BaCl}_2 \checkmark \mathbf{C} = \text{BaCO}_3 \checkmark \mathbf{D} = \text{AgCl} \checkmark$	4	
4	(c)	(ii)	Ba(NO ₃) ₂ ✓	1	
4	(d)	(i)	Energy needed to remove an electron ✓ from each atom in one mole ✓ of gaseous atoms ✓	3	 ALLOW for three marks: 'Energy to remove one mole of electrons from one mole of gaseous atoms' ALLOW for two marks: 'Energy to remove an electron from one mole of gaseous atoms' One mole of electrons is not being removed IGNORE 'to form one mole of gaseous 1+ ions' ALLOW idea of electron removal for 1st mark: e.g. 'Energy needed to remove electrons'
4	(d)	(ii)	$Sr^{+}(g) \rightarrow Sr^{2+}(g) + e^{-\sqrt{g}}$ state symbols required	1	ALLOW Sr ⁺ (g) – e [−] → Sr ²⁺ (g) ALLOW e for e [−] Element symbol must be Sr

Q	uesti	on	Answer	Mark	Guidance
Q 4	Auestion (d) (iii)		Answer Observations 1 mark Effervescence OR fizzing OR bubbling OR gas AND Solid/Mg/metal dissolves/disappears OR (colourless) solution forms ✓ Trend in reactivity 1 mark Reactivity increases down the group AND	Mark 6	Guidance FULL ANNOTATIONS WITH TICKS, CROSSES, CON, etc MUST BE USED IGNORE 'hydrogen produced' but ALLOW 'hydrogen gas produced' DO NOT ALLOW an incorrectly named gas (e.g. CO ₂)
			AND Faster fizzing OR dissolves quicker OR more vigorous ✓ Reasons for reactivity trend 3 marks Atomic radius increases OR more shells/energy levels ✓ More shielding ✓		IGNORE 'more orbitals' OR 'more sub-shells' ALLOW 'greater repulsion from inner shells' ALLOW 'pull' for 'attraction'
			Less nuclear attraction (on outer electrons) OR (outer) electrons are attracted less strongly (to the nucleus) ✓ Energy to remove electrons 1 mark lonisation energy decreases OR less energy required to remove electron ✓		IGNORE just 'less attraction' OR less force OR less strongly held
			Total	20	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

