

GCE

Chemistry A

Unit F324: Rings, Polymers and Analysis

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

	Quest	ion	Answer	Marks	AO element	Guidance
1	(a)	(i)	IN A	2	AO1	Diagrams must show the full ring Labels not required Diagram shows correct position of localised π- bonds/π-electrons OR correct position of p-orbital overlap Diagram shows correct position of delocalised π- bonds/π-electrons OR correct position of p-orbital overlap
			<i>↓</i>		AO1	IGNORE C=C in diagram IGNORE initial diagrams showing p-orbitals
		(ii)	Maximum of 3 marks	3		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Bond lengths: <i>up to 2 marks</i> All carbon–carbon bonds the same length ✓		AO1	IGNORE any reference to reactivity
			Bond length intermediate/between (short) C=C and (long) C–C \checkmark		AO1	
			Enthalpy change of hydrogenation: <i>up to 2 marks</i> ΔH <u>hydrogenation</u> different from that expected \checkmark ΔH less exothermic than expected (when compared to ΔH hydrogenation for cyclohexene) \checkmark		AO1	DO NOT ALLOW <i>∆H</i> halogenation/hydration
	(b)	(i)	6 ✓	1	AO2	

Question	Answer		AO element	Guidance	
(b) (ii)	AlCl ₃ + Cl ₂ \rightarrow AlCl ₄ ⁻ + Cl ⁺ \checkmark \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	5	AO1 AO2 AO2 AO1	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC NOTE: If Br ⁺ is used, DO NOT ALLOW 1st mechanism mark but other marks available by ECF NOTE Absence of C ₂ H ₅ OR wrong position of C ₂ H ₅ loses intermediate mark DO NOT ALLOW the following intermediate: • π -ring must be more than halfway way down AND • Arc must be the right way up (i.e. gap towards C–Cl) ALLOW + sign anywhere within hexagon of intermediate ALLOW mechanism with Cl–ClAlCl ₃ for 1st two marks, i.e.	

Question	Answer	Marks	AO element	Guidance
	NOTE: ALLOW mechanism using Kekulé structures, i.e. \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow			Refer alternative mechanisms to TL for discussion.
(iii)	HNO ₃ AND H ₂ SO ₄ ✓	1	AO3	IGNORE temperature IGNORE catalyst 'concentrated' not required for HNO ₃ or H ₂ SO ₄ but DO NOT ALLOW dilute HNO ₃ or dilute H ₂ SO ₄
(iv)	IF answer = 61.2% award 3 marks	3		
	moles of ethylbenzene used = $2.65/106 = 0.025(0) \text{ (mol)}$ where \checkmark moles of B formed = $2.31/151 = 0.0153 \text{ (mol)}$		AO2 AO2	0.0250 mol is exact calculator value 0.0153 mol must be to at least 3sf (calculator value 0.015298013) The final answer must be to 3 SF
	yield = 0.0153/0.0250 × 100 = 61.2% ✓		AO2	 (calculator value gives 61.1920529%) (rounding of moles of B gives 61.2% exactly) ALLOW ECF from incorrect <i>M</i>_r or moles unless the yield is > 100%
	Total	14		

F324/01

Q	Question		Answer	Marks	AO element	Guidance
2	(a)		<u>nitrogen</u> electron pair OR <u>nitrogen</u> lone pair accepts a proton/H⁺ ✓	1	AO1	 DO NOT ALLOW nitrogen/N lone pair accepts hydrogen (proton/H⁺ required) ALLOW nitrogen donates an electron pair/lone pair to H⁺ IGNORE NH₂ group donates electron pair
	(b)	(i)	Sn AND concentrated HCI	1	AO3	IGNORE temperature and reaction type/purpose of reagents
		(ii)	$ \underbrace{\bigvee_{NO_2}^{NO_2} + 12[H]}_{NO_2} + 4 H_2O $	1	AO2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW H ₂ instead of [H]
	(c)	(i)	monomers join/bond/add/react/form polymer/form chain AND form another product/small molecule/H ₂ O/HC/	1	AO1	IGNORE 'two' when referring to monomers, <i>i.e.</i> (two) monomers
		(ii)	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ &$	2	AO2 AO2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 'terminal' —NH— at other end 'End bonds' MUST be shown (solid or dotted) IGNORE brackets and/or <i>n</i> ALLOW CONH for amide link

F324

C	Question		Answer	Marks	AO element	Guidance
	(d)	(i)	C ₈ H ₁₅ NO ✓	1	AO2	ALLOW any order of elements
		(ii)	H ₂ N(CH ₂) ₆ NH ₂ ✓	2	AO2	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
			HOOC(CH ₂) ₈ COOH ✓		AO2	ALLOW acyl chloride, CIOC(CH2)8COCI
			Total	9		

C	Question		Answer		Marks	AO element	Guidance
3	(a)		M1 (¹³ C NMR spectrum indicates) four types of carbon	~	3	AO1	ALLOW 4 carbon environments
			M2 (Tollens' test shows) compound D is an aldehyde	~		AO2	ALLOW correct structural OR displayed OR
			M3 Correct structure H_3C $CH-CH_2-C$ H_3C H_3C			AO2	skeletal formulae OR combination of above as long as unambiguous NOTE: Correct structure also scores M2 (aldehyde shown in structure) ALLOW 3-methylbutanal (2 marks)
				~			NOTE: Ketone with four carbon environments i.e. methylbutanone (Maximum 2 marks possible: M1 and M3)

F324

Question	Answer	Marks	AO element	Guidance
(b)	Correct structure of compound E (pentan-3-one) \checkmark	4	AO2	
	$C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5} \xrightarrow{C} C_{2}H_{5}$			ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous IF structure E is incorrect 3 marks can be
	:ČN			scored for the mechanism e.g. apply ECF to error in structure e.g. CH_2 missing from the chain
	curly arrow from $^-$ CN to C(δ +) of C=O group \checkmark		AO2	First curly arrow must come from either lone pair on ⁻ :CN or '' charge on ⁻ CN DO NOT ALLOW lone pair and/or negative charge on nitrogen atom
	dipole correct AND curly arrow from C=O bond to O(δ –) \checkmark		AO1	
	Correct intermediate with negative charge on O AND Curly arrow from O ⁻ to H ⁺ \checkmark		AO1	Curly arrow must come from either lone pair on O or negative charge on O
				ALLOW curly arrow from O ⁻ to H δ + of H ₂ O Dipole on H ₂ O must be shown. IGNORE other products
	Total	7		

C	Question		Answer		AO element	Guidance	
4	(a)		M1 Mirror images around a tetrahedral carbon atom	2	AO1	3-D diagrams must contain 1 'out wedge' and 1 'in wedge'/dotted line AND 2 lines in plane of paper ALLOW 2 'out wedges', 1 'in wedge' and 1 line in plane of paper.	
			H ₂ N COOH COOH H ₂ N CH ₂ OH HO.H ₂ C NH ₂			ALLOW the same 3-D structure repeated with two groups 'swapped'. After rotation the second isomer is a mirror image of the first.	
			M2 The four correct groups with correct connectivity \checkmark		AO2	Connectivity : the chiral carbon must be linked to the C of the COOH AND the C of the CH_2OH AND the N of NH_2 .	
	(b)		M1 Compound F C_2H_5 Br - C - COOH H	6		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous	
			M2 Compound G $H_2N \xrightarrow{C_2H_5}$ $H_2N \xrightarrow{C_2H_5}$ $H_2 \xrightarrow{C_2H_5}$		AO2	IGNORE labels for M1 , M2 , M3 and M4 ALLOW ECF for the following conversions: $\mathbf{F} \rightarrow \mathbf{G}$ (F must have correct molecular formula) $\mathbf{H} \rightarrow \mathbf{I}$ (I must have correct empirical formula)	

F324

Question	Answer	Marks	AO element	Guidance
Question	M3 Compound H H C H H H C H C H H H H H H H H H H H H H	Marks		C=C must be shown in H ALLOW multiple repeat units but must be full repeat units ALLOW end bonds shown as DO NOT ALLOW if structures have no end bonds IGNORE brackets unless they are used to pick out the repeat unit from a polymer chain IGNORE n ALLOW reaction with HBr is an addition reaction
	M6 Formation of G is a (nucleophilic) substitution reaction \checkmark		AO1	DO NOT ALLOW nucleophilic addition ALLOW reaction with NH ₃ is a substitution reaction DO NOT ALLOW electrophilic substitution

F324

Question	Answer	Marks	AO element	Guidance
	Answer $0 \rightarrow 0^{-} Na^{+}$ $0 \rightarrow 0^{-} Na^{+}$ $1 \text{ mark for correct structure with COOH or COO^{-} Na^{+}}$ $1 \text{ mark for correct structure with COOH or COO^{-} Na^{+}}$ $1 \text{ mark for correct structure with COOH or COO^{-} Na^{+}}$	3	AO2 AO2 AO2	For both structures, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) Note: If there are more than two structures shown, credit any correct structures and IGNORE incorrect structures DO NOT ALLOW –COO–Na (covalent bond) (penalise once only) ALLOW –COO [–] ALLOW delocalised carboxylate
	Total	12		(Na ⁺)

C	Question		Answer		AO element	Guidance		
5	5 (a)		Throughout, ALLOW formulae OR correct names	7		ANNOTATE ANSWER WITH TICKS AND CROSSES ETC		
			M1 react (CH ₃) ₃ CCHO with H ₂ SO ₄ /K ₂ Cr ₂ O ₇ AND heat/reflux ✓		AO3	ALLOW H ⁺ /Cr ₂ O ₇ ²⁻ or H ₂ SO ₄ /Na ₂ Cr ₂ O ₇ ALLOW acidified dichromate		
			M2 Equation: $(CH_3)_3CCHO + [O] \rightarrow (CH_3)_3CCOOH \checkmark$		AO2			
			M3 react (CH ₃) ₃ CCHO with NaBH₄ ✓					
					AO3	ALLOW LiAIH4 as alternative to NaBH4		
			M4 Equation: $(CH_3)_3CCHO + 2[H] \rightarrow (CH_3)_3CCH_2OH \checkmark$					
			M5 react $(CH_3)_3CCOOH$ with $(CH_3)_3CCH_2OH \checkmark$ AND acid catalyst/H ₂ SO ₄		AO2			
			M6 Equation: $(CH_3)_3CCOOH + (CH_3)_3CCH_2OH \rightarrow$ $(CH_3)_3CCOOCH_2C(CH_3)_3 + H_2O \checkmark$		AO3	If both already correctly identified, ALLOW 'carboxylic acid and alcohol' ALLOW conc H ₂ SO ₄ DO NOT ALLOW dilute or H ₂ SO ₄ (aq) ALLOW HCI IGNORE HNO ₃		
			M7 reflux in either (M1) or (M5) or catalyst used in (M5) \checkmark QWC must spell catalyst or reflux correctly		AO2			
					AO1			

Q	Question		Answer	Marks	AO element	Guidance				
5	(b)		similar compounds have similar retention times no reference values 	2	AO1 AO1	ALLOW same retention times ALLOW correct description of retention time ALLOW leave the column at the same time ALLOW relative solubilities/partition/adsorption will be very similar IGNORE Rf values ALLOW no data book values (of retention times)				
	(c)		Elemental analysis and molecular formula (2 marks) Use of percentages to find empirical formula = C_3H_6O \checkmark	2	AO2 ×2	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC. CHECK SPECTRUM				
			Relative molecular mass from mass spectrum = 116 AND Molecular formula = C ₆ H ₁₂ O ₂ \checkmark Ester structure (3 marks) H ₃ C-CH ₂ -C CH ₃ CH ₃ $\checkmark \checkmark \checkmark$	3	AO2 ×3	$\begin{tabular}{ c c c c c c } \hline Element & \% & A_r & moles & ratio \\ \hline C & 62.07 & 12 & 5.173 & 3 \\ \hline H & 10.34 & 1 & 10.34 & 6 \\ \hline O & 27.59 & 16 & 1.724 & 1 \\ \hline \end{tabular}$ Alternative method: carbon: $(116 \times 62.07/100)/12 = 6$ hydrogen: $(116 \times 10.34/100)/1 = 12$ oxygen: $(116 \times 27.59/100)/16 = 2$ ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) If not fully correct award marks as follows: If the structure is any ester with molecular formula $C_6H_{12}O_2$, e.g. $CH_3COOCH_2CH(CH_3)_2$ (one mark)				
						If the ester link is reversed i.e. (CH ₃) ₂ CHCOOCH ₂ CH ₃ (two marks) Ignore any name				

F324

Question	Answer	Marks	AO element		Guidance)	
	NMR analysis (4 marks)	4		NOTE: Each peak • its δ value: ± 0.2 • a range • its relative peak a • its splitting	ppm	tified from	:
	Multiplet/heptet/peak at δ 4.9/3.9 is due to H C-O \checkmark		AO2	Check annotated		R-CH	R-CH
	M2 Quartet/peak at (δ) 2.3 is due to HC-C=O \checkmark		AO2	6 5 4	, j , 3 ppm		
				Chemical Relativ shift/ppm area		Type of proton	Adjacent protons
				1.2 3	triplet	R-CH	2
				1.3 6	doublet	R-C H	1
				2.3 2	quartet	HC-C=O	3
				4.9 1	multiplet	O-CH	6

F324

Question	Answer	Marks	AO element	Guidance
	M3 (CH₂CH₃) Triplet/peak (at δ 1.2) AND quartet/peak (at δ 2.3) = CH ₂ CH ₃ OR Triplet/peak (at δ 1.2) shows 2 adjacent Hs/protons = CH ₂ CH ₃ OR Quartet/peak (at δ 2.3) shows 3 adjacent Hs/protons = CH ₂ CH ₃ NOTE: QWC – triplet or quartet must be spelled correctly in the correct context for M3 \checkmark M4 Multiplet/heptet/peak (at δ 4.9/3.9) shows 6 adjacent H/two CH ₃ groups OR		AO2	ALLOW CH ₃ CH ₂ described as CH ₃ and 2 adjacent H OR CH ₂ and 3 adjacent H
	Doublet/peak (at δ 1.3) shows one adjacent H √		AO2	
	Total	18		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2017