Mark Scheme

Question	Answer	Marks	Guidance
1 (i)	EITHER:		
	$S_{xy} = \sum xy - \frac{1}{n} \sum x \sum y = 40.66 - \frac{1}{60} \times 43.62 \times 55.15$	M1*	For method for S_{xy}
	= 0.56595		
	$S_{XX} = \sum x^2 - \frac{1}{n} \left(\sum x \right)^2 = 32.68 - \frac{1}{60} \times 43.62^2$	M1*	For method for at least one of S_{xx} or S_{yy}
	= 0.96826		
	$S_{yy} = \sum y^2 - \frac{1}{n} \left(\sum y \right)^2 = 51.44 - \frac{1}{60} \times 55.15^2$	A1	For at least one of S_{xy} , S_{xx} or S_{yy} (to 2 sf) Note Allow 0.57322 for S_{xy} and 0.76634
	= 0.74796		for S_{yy} from rounding mean of y to 0.919.
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{0.56595}{\sqrt{0.96826 \times 0.74796}} = 0.665$	M1	For structure of <i>r</i>
	$V = \frac{1}{\sqrt{S_{xx}S_{yy}}} = \frac{1}{\sqrt{0.96826 \times 0.74796}} = 0.005$	dep* A1	For answer rounding to 0.66 or 0.67
	OR:	[5]	
	$\operatorname{cov}(x,y) = \frac{\sum xy}{n} - \frac{1}{xy} = 40.66/60 - (43.62/60 \times 55.15/60)$ $= 0.0094325$	M1*	For method for $cov(x, y)$
	rmsd(x) = $\sqrt{\frac{S_{xx}}{n}} = \sqrt{(0.96826/60)} = \sqrt{0.016137} = 0.1270$	M1*	For method for at least one msd or rmsd
	rmsd(y) = $\sqrt{\frac{S_{yy}}{n}} = \sqrt{(0.74796/60)} = \sqrt{0.012466} = 0.1117$	A1	For at least one of $cov(x, y)$, msd or rmsd correct (to 2 sf)
	$r = \frac{\operatorname{cov}(x, y)}{\operatorname{rmsd}(x)\operatorname{rmsd}(y)} = \frac{0.0094325}{0.1270 \times 0.1117} = 0.665$	M1	For structure of <i>r</i>
	$rmsd(x)rmsd(y) = \frac{1}{0.1270 \times 0.1117} = 0.005$	dep*	For answer rounding to 0.66 or 0.67
		A1	For answer rounding to0.66 or 0.67
		r <i>e</i> n	Methods mixed – max M0M1A1M0A0
		[5]	

Question	Answer	Marks	Guidance		
1 (ii)	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$ (one-tailed test)	B1	For H_0 , H_1 in symbols. Hypotheses in words must refer to population. Do not allow alternative symbols unless clearly defined as the population correlation coefficient.		
	where ρ is the population correlation coefficient	B1	For defining ρ . Condone omission of "population" if correct notation ρ is used, but if ρ is defined as the sample correlation coefficient then award B0 . Allow " ρ is the pmcc".		
	For $n = 60$, 5% critical value = 0.2144	B1	For critical value		
	Since 0.665 > 0.2144, the result is significant.	M1	For sensible comparison leading to a conclusion provided that r < 1. The comparison can be in the form of a diagram as long as it is clear and unambiguous. Sensible comparison: e.g. $0.665 > 0.2144$ is 'sensible' whereas $0.665 > -0.2144$ is 'not sensible'. Reversed inequality sign e.g. $0.665 < 0.2144$ etc. gets max M1 A0.		
	Thus we have sufficient evidence to reject H_0	A1	For reject H_0 o.e. FT their <i>r</i> and critical value from 5% 1-tail column.		
	There is sufficient evidence at the 5% level to suggest that there is positive correlation between FEV1 before and after the two-week course.	E1	For correct, non-assertive conclusion in context (allow 'x and y' for context). E0 if H_0 and H_1 not stated, reversed or mention a value other than zero for ρ in H_0 .		
		[6]			

	Question	Answer	Marks	Guidance	
1	(iii)	The underlying population must have a bivariate Normal distribution.		Condone "bivariate Normal distribution", "underlying bivariate Normal distribution", but do not allow "the data have a bivariate Normal distribution"	
		Yes, since the scatter diagram appears to have a roughly elliptical shape.	E1	Condone 'oval' or suitable diagram	
			[2]		
1	(iv)	The significance level is the probability of rejecting the null hypothesis	E1*	For "probability of rejecting H_0 " or "probability of a significant result".	
		when in fact it is true.	E1dep*	For "when H ₀ is true"	
			[2]		
1	(v)	$\sum x = 43.62 + 0.45 = 44.07$			
		$\sum_{y=55.15-0.45=54.70}^{2}$	B1	For $\sum x$ or $\sum y$ or $\sum xy$	
		$\sum xy = 40.66$			
		$\sum x^2 = 32.68 + 1 - 0.55^2 = 33.3775$ $\sum y^2 = 51.44 - 1 + 0.55^2 = 50.7425$	B1	For $\sum x^2$ or $\sum y^2$ (to 2 dp)	
			B1	For all correct (ignore <i>n</i>)	
			[3]		
2	(i)	P(At least one has red hair) = $1 - 0.97^{10}$	M1	M1 for $1 - 0.97^{10}$	
		= 0.263	A1	Allow 0.26	
			[2]		
2	(ii)	(Because X is binomially distributed), n is large	E1 E1	Allow "sample is large" for <i>n</i> is large	
		and p is small.		Allow " $np < 10$ " or "mean \approx variance" for " p is small"	
				Do not allow "the probability is small"	
		Mean = 1.8 B1			
			[3]		

	Questi	ion	Answer	Marks	Guidance
2	(iii)	(A)	$P(X = 2) = e^{-1.8} \frac{1.8^2}{2!} = 0.2678$ OR = 0.7306 - 0.4628 = 0.2678	M1 A1	For calculation for $P(X = 2)$ FT their mean. Allow answer to 3sf.
2	(iii)	(B)	$P(X > 2) = 1 - P(X \le 2) = 1 - 0.7306$ = 0.2694	[2] M1 A1 [2]	$1 - P(X \le 2) \text{ used. e.g.} 1 - P(X \le 2) = 1 - 0.4628 \text{ gets}$ M0 CAO
2	(iv)		The mean $(np = 1.8)$ is too small It is not appropriate to use a Normal approximation	E1* E1dep* [2]	For "mean is too small" or "mean < 10" For "not appropriate". Do not allow " <i>p</i> is too small".
2	(v)		Binomial(5000, 0.03)	B1* B1dep* [2]	For binomial, or B(,) For parameters
2	(vi)		Mean 5000 × 0.03 = 150 Variance = 5000 × 0.03 × 0.97 = 145.5 Using Normal approx. to the binomial, $X \sim N(150, 145.5)$ $P(X \ge 160) = P\left(Z \ge \frac{159.5 - 150}{\sqrt{145.5}}\right)$	B1 B1 B1	For mean (soi) For variance (soi) For continuity corr.
	$= P(Z > 0.7876) = 1 - \Phi(0.7876) = 1 - 0.7846$ = 0.215 (to 3 sig.fig.)		M1 A1 [5]	For probability using correct tail and structure (condone omission of/incorrect c.c.) CAO, (Do not FT wrong or omitted CC) Allow 0.2155. Do not allow 0.216	

Mark Scheme

	Question	Answer	Marks	Guidance	
3	(i) $P(Y = 76) = P\left(\frac{75.5 - 76}{12} \le Z \le \frac{76.5 - 76}{12}\right)$		B1	For one correct continuity correction used	
		= P(-0.04166 < Z < 0.04166) = $\Phi(0.04166) - (1 - \Phi(0.04166))$	M1	For standardizing	
		$= 2 \times \Phi(0.04166) - 1$ = 2 × 0.5167 - 1	M1	For correctly structured probability calculation.	
		= 0.0334	A1	CAO inc use of diff tables. Allow 0.0330 – 0.0340 www.	
			[4]		
3	(ii)	$P(Y \ge 80) = P\left(Z \ge \frac{79.5 - 76}{12}\right)$	B1	For correct cc used	
		$= P(Z > 0.2917) = 1 - \Phi(0.2917)$	M1	For correct structure	
		= 1 - 0.6148 = 0.3852 = 0.385 to 3 sig fig	A1	CAO do not allow 0.386	
			[3]		
3	(iii)	$3 \times 0.3852 \times 0.6148^2 = 0.4368$	M1	$3 \times \text{their } p \times (1 - \text{their } p)^2$	
			A1	FT their <i>p</i> . Allow 2sf if working seen.	
			[2]		

	Question	Answer	Marks	Guidance		
3	(iv)	EITHER: $P(\text{Score } \ge k) = 0.1$				
		$\Phi^{-1}(0.9) = 1.282$	B1	For 1.282		
		$\frac{k - 76}{12} = 1.282$	M1	Allow $k - 0.5$ used for k. Positive z used.		
		$k = 76 + (1.282 \times 12) = 91.38$ or $k = 76 + 0.5 + (1.282 \times 12) = 91.88$	A1	For 91.38 or 91.88		
		91.38 > 90.5 or 91.88 > 91	M1	Relevant comparison (e.g. diagram)	WWW	
		so lowest reported mark $= 92$	A1			
		OR Trial and improvement method	M1	M1 for attempt to find $P(Mark \ge integer)$		
		$P(Mark \ge 91) = P(Score \ge 90.5) = 0.1135$	A1	A1 for 0.1135		
		$P(Mark \ge 92) = P(Score \ge 91.5) = 0.0982$	A1	A1 for 0.0982		
	$P(Mark \ge 91) > 10\%$ and $P(Mark \ge 92) < 10\%$		M1	M1 for comparisons	WWW	
		so lowest reported mark $= 92$	A1			
			[5]			
3	(v)	$P(Y \le 50) = 0.2$				
		$P(Z \le \frac{50.5 - \mu}{12}) = 0.2$	B1	For 50.5 used		
		$\frac{50.5 - \mu}{12} = \Phi^{-1}(0.2) = -0.8416$	B1	For -0.8416. Condone - 0.842 Condone 0.8416 if numerator reversed.		
		12	M1	For structure.		
	$u = 50.5 + (12 \times 0.8416) = 60.6$		Al	CAO		
		$\mu = 50.5 + (12 \times 0.8416) = 60.6$		CAU		
			[4]			

Mark Scheme

Question		Α	nswer			Marks	Guidance	
4 (i)		H_0 : no association between sex and artist preferred H_1 : some association between sex and artist preferred					For both hypotheses in context	
	EXPECTED Male Female CONTRIB'N Male Female	Monet 12.13 13.87 Monet 1.4081 1.2321	Renoir 28 32 Renoir 0.3214 0.2813	Degas 13.07 14.93 Degas 1.8626 1.6298	Cézanne 16.8 19.2 Cézanne 0.2881 0.2521	M1 A2 M1 A2	For expected values (to 2 dp where appropriate) (allow A1 for at least one row or column correct) For valid attempt at (O–E) ² /E For all correct (to 2 dp) and presented in a table or clear list. (Allow A1 for at least one row or column correct)	NB:These three marks cannot be implied by a correct final value of X^2
	$X^{2} = 7.28$ Refer to χ_{3}^{2}					B1 B1	Allow 7.27 for 3 deg of f	www
	Critical value at Result is signific		= 6.251			B1 B1	CAO for cv No FT from here if wrong or omitted, unless <i>p</i> -value used instead FT their X^2	B1 for <i>p</i> -value = 0.0636
	There is evidence between sex and	00		is some a	ssociation	E1	For correct (FT their X^2), non-assertive conclusion, in context.	
	NB if $H_0 H_1$ revalues award first B1 o		correlation	' mention	ed, do not	[12]		

	Question	Answer	Marks	Guidance	
4	(ii)	Monet: More females and fewer males than expected prefer Monet, as indicated by large contribution(s) (of 1.4081 and 1.2321).	E1* E1dep*	FT their table of contributions	NB MAX 3/6 for answers not referring to contributions (explicitly or implicitly).
		Renoir: Preferences are much as expected , as indicated by small contributions.	E1		
		Degas: Fewer females and more males than expected prefer Degas, as indicated by large contribution(s) (of 1.8626 and 1.6298).	E1* depE1*		
		Cézanne: Preferences are much as expected , as indicated by s mall contributions .	E1		SC1 Renoir and Cézanne have correct comments for both but without referring to contributions
			[6]		