Mark Scheme January 2006

			1 1
(i)	Faults are detected randomly and independently	B1	
	Uniform (mean) rate of occurrence	B1	2
	$(A) P(X = 0) = e^{-0.15} 0.15^{\circ} = 0.8607$	M1 for probability	
(ii)	(A) $P(X=0) = e^{-0.15} \frac{0.15^0}{0!} = 0.8607$	calc. M0 for tables unless	
		interpolated	
		A1	
	0.15		
	(B) $P(X \ge 2) = 1 - 0.8607 - e^{-0.15} \frac{0.15^{11}}{1!}$	M1	4
		A1	
	= 1 - 0.8607 - 0.1291 = 0.0102		
(iii)	$\lambda = 30 \times 0.15 = 4.5$	B1 for mean (SOI)	
	Using tables: $P(X \le 3) = 0.3423$	M1 attempt to find	3
		$P(X \le 3)$	5
(*)		A1 B1 for Poisson stated	
(iv)	Poisson distribution with $\lambda = 10 \times (0.15 + 0.05) = 2$		
	$P(X=5) = e^{-2} \frac{2^5}{5!} = 0.0361 (3 \text{ s.f.})$	B1 for $\lambda = 2$	
	5!	M1 for calculation or use of tables	
	or from tables $= 0.9834 - 0.9473 = 0.0361$	A1 FT	4
(v)	Mean no. of items in 200 days = $200 \times 0.2 = 40$	B1 for Normal approx.	
	Using Normal approx. to the Poisson,	(SOI)	
	<i>X</i> ~ N(40,40):	B1 for both parameters	
	$P(X \ge 50) = P\left(Z > \frac{49.5 - 40}{\sqrt{40}}\right)$	B1 for continuity corr.	
	$= P(Z > 1.502) = 1 - \Phi(1.502) = 1 - 0.9334$	M1 for probability	
		using correct tail	
	= 0.0666 (3 s.f.)	A1 cao , (but FT wrong or omitted CC)	5
			18
L			1

Mark Scheme January 2006

	$X \sim N(42,3^2)$		
(i)			
(A)	$P(X > 50.0) = P\left(Z > \frac{50.0 - 42.0}{3.0}\right)$	M1 for standardizing	
	= P(Z > 2.667)	M1 for prob. calc.	
		with correct tail	
	$= 1 - \Phi(2.667) = 1 - 0.9962$	A1	3
	= 0.0038	NB answer given	
	P(not positive) = 0.9962	B1 for use of 0.9962	
(i)		in binomial expression	
(B)	P(At least one is out of 7 is positive)		
Ì,	$= 1 - 0.9962^7 = 1 - 0.9737$	M1 for correct method	3
	= 0.0263	A1 CAO	
	If an innocent athlete is tested 7 times in a year there	E1 comment on their	
(i)	is a reasonable possibility (1 in 40 chance) of testing	probability in (i) B	
(<i>C</i>)	positive. Thus it is likely that a number of innocent		
	athletes may come under suspicion and suffer a	E1 for sensible	
	suspension so the penalty could be regarded as unfair.	contextual conclusion	2
	Or this is a necessary evil in the fight against	consistent with first	
	performance enhancing drugs in sport.	comment	
		B1 for $B(,)$ or	
(ii)	B(1000, 0.0038)	Binomial	
(A)		B1 <i>dep</i> for both	2
		parameters	
(ii)	A suitable approximating distribution is Poisson(3.8)	B1 for Poisson soi	
(\mathbf{B})			
Ì,	P(at least 10 positive tests) $P(X \ge 10) = 1 - P(X \le 0)$	B1FT <i>dep</i> for $\lambda = 3.8$	
	$= P(X \ge 10) = 1 - P(X \le 9)$	M1 for attempt to use	4
	= 1 - 0.9942	$1 - \mathbf{P}(X \le 9)$	
	= 0.0058	A1 FT	
	<i>NB Do not allow use of Normal approximation.</i>		
(iii)	P(not testing positive) = 0.995	B1 for 0.995 seen	
()	(lot tobing positive) (00000	(or implied by 2.576)	
	From tables $z = \Phi^{-1}(0.995) = 2.576$	B1 for 2.576 (FT their	
		0.995)	
	1 10.0		
	$\frac{h-48.0}{2.0} = 2.576$	M1 for equation in h	4
	2.0	and positive z-value	
	$h = 48.0 + 2.576 \times 2.0 = 53.15$	A1 CAO	
			10
		1	18

(i)	$ \frac{\text{Rank } x}{\text{Rank } y} \frac{1}{2} \frac{5}{4} \frac{4}{5} \frac{7}{6} \frac{6}{8} \frac{8}{10} \frac{3}{3} \frac{9}{2} \frac{2}{2} \frac{1}{10} \frac{1}{6} \frac{3}{10} \frac{1}{10} \frac$	M1 for ranking (allow all ranks reversed) M1 for d^2 A1 CAO for Σd^2 M1 for structure of r_s using their Σd^2 A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)	H ₀ : no association between <i>x</i> and <i>y</i> H ₁ : positive association between <i>x</i> and <i>y</i> Looking for positive association (one-tail test): Critical value at 5% level is 0.5636 Since $0.636 > 0.5636$, there is sufficient evidence to reject H ₀ , i.e. conclude that there appears to be positive association between temperature and nitrous oxide level.	B1 for H ₀ B1 for H ₁ NB H ₀ H ₁ <u>not</u> ito rho B1 for ± 0.5636 (FT their H ₁) M1 for comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words f.t. their r_s and sensible cv	5
(iii) (iv)	Underlying distribution must be bivariate normal. If the distribution is bivariate normal then the scatter diagram will have an elliptical shape. This scatter diagram is not elliptical and so a PMCC test would not be valid. (Allow comment indicating that the sample is too small to draw a firm conclusion on ellipticity and so on validity) n=60, PMCC critical value is $r = 0.2997So the critical region is r \ge 0.2997$	B1 CAO for bivariate normal B1 indep for elliptical shape E1 dep for conclusion B1 B1	3
(v)	 Any three of the following: Correlation does not imply causation; There could be a third factor (causing the correlation between temperature and ozone level); the claim could be true; increased ozone could cause higher temperatures. 	c.v. E1 E1 E1	3

Mark Scheme January 2006

(i)	H ₀ : no association between method of travel and type of school;	B1 for both	1
	H ₁ : some association between method of travel and type of school;		
(ii)	Expected frequency = $120/200 \times 70 = 42$ Contribution = $(21 - 42)^2 / 42$ = 10.5	M1 A1 M1 for valid attempt at $(O-E)^2/E$ A1 FT their 42 provided O = 21 (at least 1 dp)	4
(iii)	$X^2 = 42.64$		
	Refer to \mathcal{X}_2^2 Critical value at 5% level = 5.991 Result is significant There appears to be some association between method of travel and year group. NB if H ₀ H ₁ reversed, or 'correlation' mentioned, do not award first B1or final E1	 B1 for 2 deg of f(seen) B1 CAO for cv B1 for significant (FT their c.v. provided consistent with their d.o.f. E1 	4
(iv)	H ₀ : $\mu = 18.3$; H ₁ : $\mu \neq 18.3$ Where μ denotes the mean travel time by car for the whole population. Test statistic $z = \frac{22.4 - 18.3}{8.0/\sqrt{20}} = \frac{4.1}{1.789}$ = 2.292	 B1 for both correct B1 for definition of μ M1 (standardizing sample mean) A1 for test statistic 	
	10% level 2 tailed critical value of z is 1.645 2.292 > 1.645 so significant. There is evidence to reject H_0 It is reasonable to conclude that the mean travel time by car is different from that by bus.	B1 for 1.645 M1 for comparison leading to a conclusion A1 for conclusion in words and context	7
(v)	The test suggests that students who travel by bus get to school more quickly.		
	This may be due to their journeys being over a shorter distance.		
	It may be due to bus lanes allowing buses to avoid congestion.		
	It is possible that the test result was incorrect (ie implication of a Type I error).	E1, E1 for any two valid comments	2
	More investigation is needed before any firm conclusion can be reached.		18

Question 4 chi squared calculations

of school;	H ₀ : no association between method of travel and type of school; H ₁ : some association between method of travel and			
type of school;				
		Type of	f school	Row
Observed		Year 6	Year 11	totals
	Bus	21	49	70
Method	Car	65	15	80
	Cycle/Walk	34	16	50
Colur	nn totals	120	80	200
		Type of	f school	Row
Ex	pected	Year 6	Year 11	totals
	Bus	42	28	70
Method	Car	48	32	80
of travel	Cycle/Walk	30	20	50
Colur	nn totals	120	80	200
Chi S	Squared	Type of	f school	Row
Contribution		Year 6	Year 11	totals
	Bus	10.50	15.75	26.25
Method	Car	6.02	9.03	15.05
of travel	Cycle/Walk	0.53	0.80	1.33
Colur	nn totals	17.05	25.58	42.64