

Mark Scheme (Results)

January 2021

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 2FR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2021
Publications Code 4MA1_2FR_2101_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners
 must mark the first candidate in exactly the same way as they
 mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from Q13, 20 & 21 (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1 (a)		12 348	1	B1
(b)		84 312	1	B1
(c)		1,3	2	B2 for both correct values
				-1 eeoo
(d)		2,3	2	B2 for both correct values
				-1 eeoo
				Total 6 marks

2	(a)		Wednesday	1	B1	
	(b)	4 : 2.5 or 16 : 10 oe		2	M1	
			8:5		A1	M1 A0 for 5 : 8
	(c)		3.5 "envelopes"	1	B1	Accept
						for half an envelope
	(d)	6		2	M1	
		14				
			3		A1	
			$\frac{1}{7}$			
	(e)	eg Heights of bars (cms): 7, 5.5, 3 or		2	B2	B2 for all bars at correct heights with a
		heights of 3.5, 2.75, 1.5 cms	bars at correct heights			correct scale (at least one value, not
			and correct scale			contradicted. 0 implied)
						If not B2 then B1 for 1 error on heights
						or no scale, but with heights in correct
						proportion eg 7, 5.5, 3 cms
						Total 8 marks

3 (a) (i)	kilometres	1	B1	Accept km or kms
(ii)	litres	1	B1	
(iii	square cm	1	B1	Accept sq cm, square centimetres,
				cm ² etc.
(b)	$1.8 \rightarrow 2.2$	2	B2	B2 for $1800 \rightarrow 2200 \text{ mm}$
	metres			or $180 \rightarrow 220 \text{ cm}$
				or $1.8 \rightarrow 2.2 \text{ m}$
				If not B2, then B1 for
				metres, centimetres or millimetres
				Total 5 marks
4 (a) (i)	Sphere	1	B1	
(a) (ii)	Cone	1	B1	
(a) (iii	Prism	1	B1	Accept hexagon prism or
				hexagonal prism
				The state of the s

8 12

3

B1 B1

M1

A1

Total 7 marks

1 1 2

(b) (i) (ii)

 $54 \div (9 \times 2)$

(c)

5	(a)	4 - 6 or -6 - 4 or -10		2	M1	Identifying 4 and – 6 only.
						or for stating $10 \text{ or} - 10$
			10		A 1	
	(b)	$\begin{vmatrix} -6, -5, -1, 3, 4 \\ \mathbf{or} \ 4, 3, -1, -5, -6 \end{vmatrix}$		2		Putting temperatures in ascending or descending order.
			- 1		A1	
	(c)	$\frac{3}{5}$ ×100 oe		2	M1	accept $\frac{3}{5}$ or 0.6 oe
			60		A1	
	(d)	-6 + 8		2	M1	
	•		2		A1	Accept +2
						Total 8 marks

6	$\frac{4}{15} \times 1200 \ (=320)$		4	M1
	or for $\frac{3}{15}$ or $\frac{8}{15}$ seen			
	1200 – "320" (= 880) and "880" ÷ 11 (=80)			M1
	or $\frac{3}{11} \times 880$ (= 240) oe			
	or $\frac{3}{15} \times 1200$ (= 240) oe			
	1200 – ("320" + "240") or 880 – 240 (= 640)			M1
	or $\frac{8}{11} \times 880$ (= 640)			
	or $\frac{8}{15} \times 1200$ oe			
		320, 240, 640	1	A1 Must be on correct answer lines or
				clearly attributed to cake A, B and C,
				otherwise withhold final A mark.
				Total 4 marks

7	(a)		D	1	B1	
	(b)		4 hours 52 minutes	2	B1 B1	
	(c)	time = $40 + 45$ (= 85 minutes oe) or 1 hr 25 min (" 85 " - 15) \div 40		3	M1 M1	accept 60 + 25 May be implied by 70 ÷ 40 dep 1st M1
			1.75		A1	oe eg 1.750 or $\frac{7}{4}$
	(d)		T = 40k + 15	2	B2	B1 for $40k + 15$ or $T = 40k + a$ (a $\neq 15$) Accept $40 \times k$ etc
						Total 8 marks

8	(Berlin) 120 ÷ 1.16 (= 103.45)		4	M1	
	(Dubai) $600 \times 0.24 \div 1.16$ (= 124.14) oe			M1	
	or 144 ÷ 1.16				
	"124.14" – "103.45"			M1	dep on M2 Accept "103.45" - "124.14"
					or rounded/truncated values
		20.69		A 1	allow 20.68 to 20.7(0)
					Total 4 marks

Alternative Mark Scheme for Q8								
8	(Dubai =) 600×0.24 (=144)		4	M1				
	"144" - 120 = 24			M1				
	"24" ÷ 1.16			M1	dep on M2 for a fully correct method			
		20.69		A1	allow 20.68 to 20.7(0)			
				•	Total 4 marks			

9	(a)		107	1	B1 Accept $105 \rightarrow 109$
	(b)	360 – 135 or 180 + 45		2	M1
			225		A1
					Total 3 marks

10 (a)	$(60 \div 24) \times 100$ or $\frac{100}{24} \times 60$		2	M1	Complete method accept 4.16 × 60
		250		A1	cao
(b)	$\frac{30-24}{24} (\times 100) \text{ oe or } 30 \div 24 \ (=1.25) \text{ or } \frac{125}{100}$ or $\frac{30}{24} (=1.25)$ or $\frac{"250"}{2} -100$		2	M1	ft their 250 from (a)
		25		A1	cao
					Total 4 marks

11	(a)	$5 \times (-2)^2 - (-2)^3 \ (= 208)$	28	2	M1	for correct expression or at least one of 20 or 5×4 or 8 or (+) 8
	(b)		2p(4p - 1)	2	B2	B1 for $p(8p-2)$ or $2(4p^2-p)$ or $2p(4p-1)$ with two terms inside the bracket with one term correct.
	(c)		$12t^2 - 8t$	2	B2	B1 for $12t^2$ or $-8t$
	(d)	$5x^2 + 20x - 2x - 8$		2	M1	for 4 correct terms (ignoring signs) or 3 correct terms with correct signs. or $5x^2 + 18x +$ or $ + 18x - 8$
			$5x^2 + 18x - 8$		A1	
						Total 8 marks

12	$0.5 \times \pi \times 6^2 \ (= 56.54) \text{ or } 12 \times 6 \ (= 72)$		3	M1
	or $\pi \times 6^2$ oe			
	"72" – "56.54…"			M1 dep M1 for a complete method
		15.5		A1 15.4 to 15.5
				Total 3 marks

13	$2x - 3 = 20 \div 5$ or $10x - 15 = 20$		3	M1
	2x = 4" + 3 oe or $10x = 20 + 15"$			M1 For collecting terms, ft their
	10x = 35 oe			expansion
		3.5 oe		A1 dep M1
				accept $\frac{7}{2}$ or $\frac{35}{10}$
				Total 3 marks

14	(a) (i)		24, 30		1	B1 No repeats
	(ii)		21, 23, 25, 27	, 29	1	B1 No repeats
	(b)		(A∪B)' or A'∩B'	:	1	B1 or $(B \cup A)'$ or $B' \cap A'$
						Total 3 marks
15	(a)		81k ⁸		2	B2 B1 for 81 or k ⁸ seen in their final answer.
	(b)		7m ⁴ n ⁶		2	B2 B1 for 7m ⁴ or n ⁶ in a product with no other terms in m or n
						Total 4 marks
16	(a)	vertices at (-9, 6) (-9, 9) (-3, 9) (-6, 6)	Shape in correct	2	B2	B1 for congruent shape in correct
			position			orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
	(b)	vertices at (7, 3) (10, 6) (13, 6) (13, 3)	Shape in correct position	1	B1	orientation but wrong position or quadrilateral with 2 or 3 vertices

scale factor 2

centre (-3, 3)

B1

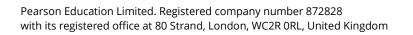
B1

SF 2, double, two times etc.

(-3, 3) stated. Accept about, from etc. with no mention of line, or column vector.

Total 6 marks

17	$x \times 1.05 = 1.26$ oe eg $(x =) 1.26 \div 1.05 (= 1.2)$	or 30 × 1.26 (= 37.80)	or 30 ÷ 1.05 (= 28.57)		3	M1	
	30 ד1.2"	"37.80" ÷ 1.05	"28.57" × 1.26			M1	
				36		A1	cao If no marks awarded, SC B1 for one operation used correctly, even with another incorrect operation. eg 1.26×0.95×30 oe or 1.26×1.05×30 oe or 1.26÷0.95×30 oe
							Total 3 marks


18	y ≥ 1 oe	3	B1	Condone $<$ and $>$ in place of \le and \ge
	$x \le 3$ oe		B1	throughout.
	$y \le 3x - 2$		B1	
				SC B1 if no marks awarded,
				recognition of lines $x = 3$ and $y = 1$.
				Allow incorrect inequality and
				condone use of equals signs
				eg $y < 1, x = 3$
				may be seen on diagram.
				Total 3 marks

19	(a)		Pacific	1	B1	Accept 1.357×10^5
	(b)	$1.119 \times 10^5 - 1.797 \times 10^4$		2	M1	Accept 111 900 – 17 970 oe
						or 93 930 or -93 930
			$9.393(0) \times 10^4$		A1	Accept (\pm) 9.393(0) × 10 ⁴
						or (\pm) 9.39 × 10 ⁴ or (\pm) 9.4 × 10 ⁴
						Total 3 marks

20		$\frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 1 \times 20}}{2 \times 1}$ or $\left(x - \frac{21}{2}\right)^2 - \left(\frac{21}{2}\right)^2 + 20 = 0$		3	M1	If factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{21 \pm \sqrt{441 - 80}}{2} \text{ or } \text{ eg} \left(x - \frac{21}{2}\right)^2 - \frac{361}{4} = 0 \text{ oe}$
	(x - 20)(x - 1)	eg $\frac{21 \pm \sqrt{441 - 80}}{2}$ or $\frac{21 \pm \sqrt{361}}{2}$ or $\frac{21 \pm 19}{2}$ or $x = \pm \sqrt{\frac{361}{4} + \frac{21}{2}}$ oe			M1	dep on M1 for correct factorisation, or a correct expression for x if completing the square. or a correct substitution into quadratic formula with some processing.
			1, 20		A1	for both correct values, dep on 1st M1 with no incorrect working.
						Total 3 marks

21	$(11 \times 3) + (8 \times 5) + (6 \times 7) + (5 \times 9) (= 160)$		4	M1	Correct numerical products using
	(=33+40+42+45=160)				midpoints (allowing one error)
					with intention to add.
					May be seen in table.
	" 160 " + x = 4. $25 \times (11 + 8 + 6 + 5 + x)$ oe			M1	dep M1 for correct equation ft
	or $\frac{160 + x}{4} = 4.25$				their 160.
	"30"+ x				
	or " 160 " + x = $4.25 \times$ " 30 " + 4.25 x				
	" 160 " - " 127.5 " = $4.25x - x$			M1	Isolating x and number terms
	or $32.5 = 3.25x$				
		10		A1	dep 1st M1
					Total 4 marks

Alternative	e Mark Scheme for question 21				
21	$(11 \times 3) + (8 \times 5) + (6 \times 7) + (5 \times 9)$ $(= 33 + 40 + 42 + 45 = 160)$		4	midpoint with inte	numerical products using s (allowing one error) ntion to add. seen in table.
	4.25y = "160" + [y - (11 + 8 + 6 + 5)] oe 4.25y = 160 + y - 30			-	For correct equation ft $y = total number$
	4.25y - y = 160 - 30 or $3.25y = 130$ or $y = 40$			M1 Isolating or $y = 40$	y and number terms
		10		A1 dep 1st N	4 1
					Total 4 marks
				TOTAL FO	OR PAPER 100 MARKS

