OCR
Oxford Cambridge and RSA

...day June 20XX – Morning/Afternoon

A Level Further Mathematics B (MEI) Y433 Modelling with Algorithms

SAMPLE MARK SCHEME

Duration: 1 hour 15 minutes

MAXIMUM MARK 60

This document consists of 16 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This indicates that the instruction In this question you must show detailed reasoning appears in the question.

2. Subject-specific Marking Instructions for Level Further Mathematics B (MEI)

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

d

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

Mark Scheme

- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through guestions candidate-by-candidate rather than guestion-by-guestion.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.
- k Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned on this occasion, but shows what a complete solution might look like

Question		on	Answer	Marks	AOs	Guidance		
1	(i)		1,2,4,5,7	B1	1.1			
				[1]				
1	(ii)		E.g. Step 60 If $n < 6$ then go to Step 30	M1	1.1	Stopping condition		
			Step 70 Stop	A1	1.2	in the right place and		
						gives 5 terms		
				[2]				
1	(iii)		3,6,10,13,17	B1	1.1			
				[1]				
1	(iv)		u(71) = 100	B1	3.2a			
			v(29)=99, v(30) = 102	B1	1.1			
			100 is in $u(n)$ but not $v(n)$, so true for $m = 100$.	E 1	2.1			
				[3]				
2								
				M1	1.1a	Forward pass		
			24	A1	1.1			
		_		M1	1.1a	Backward pass		
	20		$3 \boxed{23}$	A1	1.1			
L		」, ⁽	7					
[16] 3]						
	10		$\rightarrow 20 21 \qquad 5 \qquad 27 28 10 \qquad 42$					
г		~ /						
	11	7	$10 \qquad 10 \qquad 2 \qquad 31$					
			15					
				[4]				

Y433

Question		Answer	Marks	AOs	Guidance		
3	(i)	B 2 3	M1	1.1a	Dijkstra, starting from F All correct	Order of labelling on A and E could be reversed	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 B1 [3]	1.1	All correct		
3	(II)	$\left(\frac{q}{t}\right)^{3} t$	B1	2.4 3.3			
			[2]				
3	(iii)	$O(n^3)$ does not mean proportional to n^3 , which is the assumption behind answer to (ii).	E1	3.5b			
			[1]				

Mark Scheme

Question		Answer	Marks	AOs	Gui	idance
4	(i)	Largest (30) in 10 th /last place	B1	1.1		
		Smallest (21) in 9 th /penultimate place	B1	1.1		
			[2]			
4	(ii)	Each pass moves the smallest number 1 to left, so need $n - 1$	E1	2.1		
		passes to get smallest number to left				
		One checking pass with no swaps, so n passes altogether	E1	2.4		
		n – 1 comparisons in one pass	M1	1.1		
		n(n-1) comparisons altogether	A1	2.2a		
			[4]			
4	(iii)	n – 1	B1	1.1		
		n(n – 1)	B1	2.2a		
			[2]			

Y433

Question		n	Answer	Marks	AOs	Guidance	
5	(i)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 M1	1.1	Choosing 4 in column A Selecting at least two entries in column D All correct	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[3]	1.1	ADHCGJ or ADHGCJ JD replacing JH is an alternative solution	
5	(ii)		Algorithm terminates as no remaining values in cols	E1	2.2a		
			ACDGHJ	[1]			
5	(iii)	(A)	A G G G G G G G G	B1	1.1	Connector JD replacing JH is an alternative solution	
5	(iii)	(B)	Length of minimum connector = 29	B1 [1]	1.1		

Y433

Question		on	Answer	Marks	AOs	Guidance	
5	(iv)	(A)	$F \xrightarrow{8} 9$ B	B1	1.1	Network	
			8 10 E	[1]			
5	(iv)	(B)	Ţ	B 1	1.2	Minimum connector	
			8 7				
			Г				
			8				
			E				
				[1]			
5	(iv)	(C)	Length of minimum connector $= 23$	B1	1.1		
_			And AD much have minimum annual and the minimum and	[1]	0.1		
2	(V)		Arc AB must be in minimum connector otherwise not connected and AB cannot be part of a cycle	EI	2.1		
			If a shorter spanning tree than the one suggested is possible then	E1	2.3		
			there will be a shorter minimum connector for one or both of				
			ACGHJ, BEFI				
				[2]			

Question		n	Answer	Marks	AOs	Gu	idance
5	(vi)		E.g. If arc length $AB = 1$ and arc length $CE = 100$ [then applying	E1	3.1 a	Example of true	
			Kruskal] will produce the suggested minimum connector.				
			E.g. If arc length $AB = arc$ length $CE = 1$ [then applying	E1	2.4	Example when false	
			Kruskal] will produce a minimum connector with both of AB				
			and CE in it.				
			So sometimes true	E1	2.2a		
				dep			
				[3]			
6	(i)		Maximise $5x + 2y + 3z$	M1	3.3	objective	
			subject to $2x + 5y + 3z \le 20$	A2	3.3	constraints	
			$2y + z \le 10$		1.1	-1 each error	
			$2x + 4y + 2z \le 70$				
			4x + 3y + 2z < 30				
			$\frac{1}{2} \frac{1}{2} \frac{1}$				
			$x, y, z \geq 0$	[2]			
6	(;;)	(A)		[3] M1	2.4	Divot	
U	(II)	(A)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3.4 1 1	ell correct	
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AI	1.1	an correct	
			0 0 0.25 0 -0.5 1 0 0.25 7.5				
			0 0 0.75 0 -0.5 0 1 -0.25 52.5				
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	[2]			
	(••)			[2]	2.2		
0	(11)	(B)	Maximum profit of £38./5 manufacturing 6.25 litres of X, none of X and 2.5 litres of Z	B1	3.2a		
				[1]			
				[I]			

Mark Scheme

	Questio	on	Answer	Marks	AOs	Gui	idance
6	(iii)		Q P x y z s ₁ s ₂ s ₃ s ₄ s ₅ a ₅ RHS	B1			
			1 0 0 1 0 0 0 0 0 0 -1 0 5	B1	3.3	Surplus	
			0 1 -5 -2 -3 0 0 0 0 0 0 0	B1			
					3.5c	Additional variable	
					1.1	New objective	
				[3]			
7	(i)		Flow is in direction C to D.	E1	3.3		
-	(-)			[1]	0.0		
7	(ii)	(A)	SA+ SB is the total flow leaving S	E1	1.2		
ľ	(11)	(1.2)	This line maximises the total flow in the network so finds the	E1	3.3		
			capacity		0.0		
				[2]			
		(B)	SA + BA is the flow into vertex A $AD + AC$ is the flow out of	E1	11		
		(D)	vertex A		1.1		
			This line achieves: flow into $A = $ flow out of A	E 1	3.3		
				[2]	5.5		
		(\mathbf{C})	This constrains the flow from C to T to be not greater than its	E1	2.5		
			capacity of 2	T/T	2.3		
			capacity of 2.	[1]			

Y433

Y433

	Questio	n	Answer	Marks	AOs	Gu	idance
	S	4	A A D D A D A D A D C T Spreadsheet LP Solver	B1 [2]	3.4		
7	(iii)	(B)	The maximum capacity of the network is 6.	B1 [1]	3.2a		
7	(iv)		${S, A} {B, C, D, T}$	B1 [1]	3.4		
7	(v)		AB and CT can be shut with flow as online solver Also BD can be shut – increase BC, CD, DT by 1	B1 B1 [2]	3.1b 3.2a	Any 2 shut All three shut	