

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE MATHEMATICS

H

Higher Tier

Paper 1 Non-Calculator

Tuesday 6 November 2018

Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

mathematical instruments

You must **not** use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.
- You may ask for more answer paper, graph paper and tracing paper. These must be tagged securely to this answer book.

Advice

In all calculations, show clearly how you work out your answer.

For Exam	iner's Use
Pages	Mark
2–3	
4–5	
6–7	
8–9	
10–11	
12–13	
14–15	
16–17	
18–19	
20–21	
22–23	
TOTAL	F

Answer all questions in the spaces provided

1 Simplify $\left(5^4\right)^2$

Circle your answer.

[1 mark]

- 5⁶
- 5⁸
- 25⁶
- 25⁸
- 2 Circle the volume, in cm³, of a cylinder with radius 5 cm and height 8 cm

[1 mark]

- 40π
- 80π
- 200π
- 1600π

Simplify $16a^2 \div a + 3a \times 2$ Circle your answer.

[1 mark]

- **22***a*
- 8*a*
- 38*a*
- **2***a*

4	Circle	the	value	οf	റവട	309
4	CITCIE	uie	value	ΟI	CUS	JU

[1 mark]

 $\frac{1}{2}$

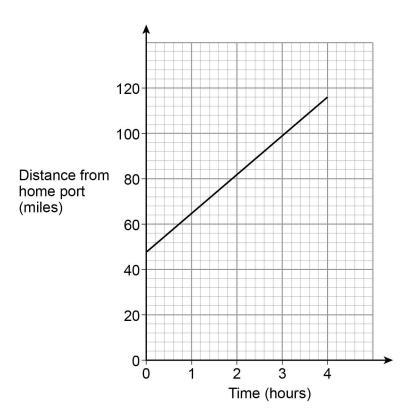
 $\frac{\sqrt{3}}{2}$

0

1

5 Work out $8\frac{1}{2} \div 2\frac{2}{3}$

Give your answer as a mixed number.


[4 marks]

Answer _____

A ship is sailing in a straight line from its home port.

The distance-time graph shows 4 hours of the journey.

Answer

Work out the speed of the ship during these 4 hours.	[3 marks]

mph

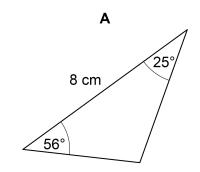
Dο	not	V	vrite
ou	tside	e	the
	bo	X	

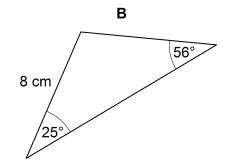
7	The sum of the angles in any quadrilateral is 360° For example, in a rectangle $4 \times 90^{\circ} = 360^{\circ}$						
	Zak writes, $5 \times 90^{\circ} = 450^{\circ}$ so the sum of the angles in any pentagon must be 450°						
	Is he correct? Tick a box.						
	Yes No						
	Show working to support your answer.	[2 marks]					
	Turn over for the next question						

Turn over ▶

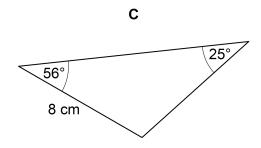
	Day	1	2	3	4	5	6	7	8	9	10
	Number of planes	148	151	147	155	153	147	155	102	151	154
a)	The airport was affected	d by fo	g on o	ne of t	he day	′ S.					
	Which day do you think	it was	?								
	Give a reason for your a	answe	r.								[1 m
	Day										
	_										
	Reason	edict h	ow ma	any pla	nes wi	II land	at the	airport	in a ye	ear.	
	Kim uses the data to profine the method, she uses an estimate	e of 15	50 plan	es in e	each 4-	-hour p		•			
o)	Kim uses the data to pro In her method, she uses an estimate assumes the sai	e of 15 me nu	50 plan	es in e	each 4-	-hour p		•			
b)	Kim uses the data to profine the method, she uses an estimate	e of 15 me nu	50 plan	es in e	each 4-	-hour p		•		e day	3 ma
b)	Kim uses the data to pro In her method, she uses an estimate assumes the sai	e of 15 me nu	50 plan	es in e	each 4-	-hour p		•		e day	3 ma
b)	Kim uses the data to pro In her method, she uses an estimate assumes the sai	e of 15 me nu	50 plan	es in e	each 4-	-hour p		•		e day	3 ma

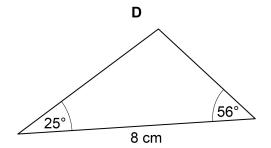
8	(c)								
		fewer planes land in winter than in summer							
		fewer planes land at night than during the day.							
		What does this tell you about Kim's prediction?							
		Tick one box.							
		Her prediction is too low							
		Her prediction is too high							
		Her prediction could be too low or too high							
		Give a reason for your answer. [2 marks]							
		Turn over for the next question							
			-						


Turn over ►



9	$\sqrt{6^2 + 8^2} = \sqrt[3]{125a^3}$	
	Work out the value of a .	[4 marks]
	Answer	
10	Work out the percentage increase from 80 to 280	[3 marks]
	Answer	%




11 Here are four triangles.

Not drawn accurately

Which **two** triangles are congruent? Circle **two** letters below.

[1 mark]

Α

В

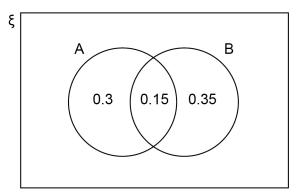
С

D

Turn over for the next question

8

Turn over ►


12	Solve $x^2 - x - 12 = 0$	
		[3 marks]
	Answer	
	7 (16We)	_
13	e: f = 2:3 and $f: g = 5:4$	
	Work out $e:g$	
	Give your answer in its simplest form.	
		[3 marks]
	Answer :	

14 A and B are two events.

Some probabilities are shown on the Venn diagram.

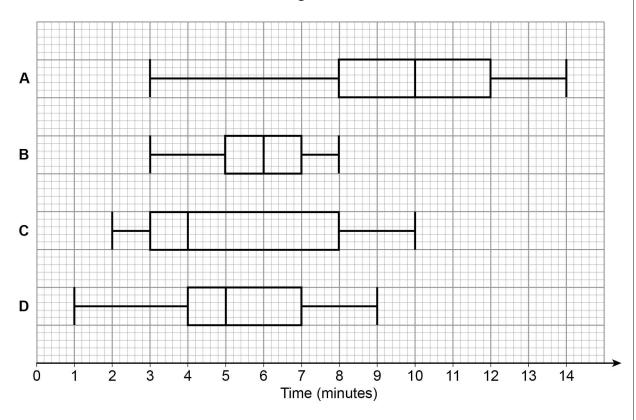
Answer

Work out	P(A' U B)			[2 marks

Turn over for the next question

8

Turn over ►



In a survey, queuing times at supermarket checkouts were recorded.

One morning, samples of 50 customers were taken at supermarkets A, B, C and D.

The box plots represent the results.

Queuing times

15 (a) On average, which supermarket had the lowest queuing times? Give a reason for your answer.

[2 marks]

Supermarket				
Reason				

45 0	A4 and the last of	41			Do not wn outside th box
15 (b)	At which supermarket wer Give a reason for your ans		es most consistent?		
	,			[2	! marks]
	Supermarket				
	Reason				
16	Circle the number that is o	closest to the value	e of 29 ³	,	[4 manula]
					[1 mark]
	27 000	90	2700	9000	
17	Work out the exact value	of $\left(\frac{3}{4}\right)^{-3}$			
		(4)		[2	! marks]
	Answer				
	Tur	n over for the ne	xt question		

th and Mia translate documents from Spanish into English. set of documents that would take Beth 8 days would take Mia 10 days.	
th starts to translate the documents. er 2 days Beth and Mia both work on translating the documents.	
w many more days will it take to complete the work? u must show your working.	
	[4 mar
Answer days	

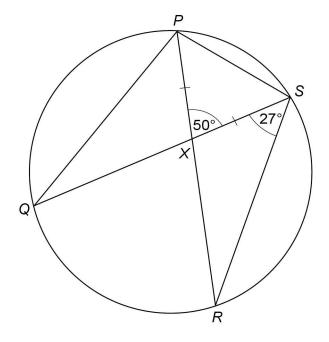
19	In a chess club,	there are x	bovs and	v airls.
. •	m a chicoc chab,		DO JO GING	. <i>,</i> 9c.

19 (a)	If 5 more boys and 8	B more girls join, there wou	uld be half as many boys as girls.
--------	----------------------	------------------------------	------------------------------------

Show that y = 2x + 2 [2 marks]

19 (b) If instead,

10 more boys and 1 more girl join, there would be the same number of boys and girls.


work out x and y .	
	[3 marks]

20	<i>P</i> , <i>Q</i> ,	R and S are	points on	a circle.
----	-----------------------	-------------	-----------	-----------

PXR and QXS are straight lines.

PX = SX

Not drawn accurately

Prove that QS is not a diameter of the circle.	[4 marks]

21	Here are	e the first fo	ur terms of a	a quadratic s	sequence.	Do not write outside the box
		11	26	45	68	
	Mork o	ıt an avnraa	oion for the	wth torm		
	WOIK OL	it ari expres	sion for the	ntii teiiii.	[3 marks]	
		A	nswer			
			Turn ove	r for the ne	ext question	

7

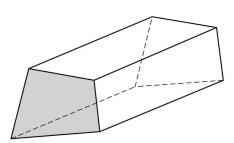
Turn over ▶

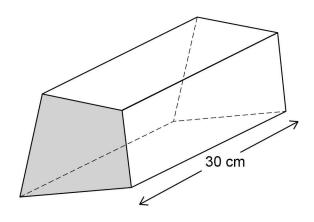
22 Solve $\frac{x}{x+4} + \frac{7}{x-2} =$	= 1
--	-----

You **must** show your working.

[4	marks]

23 Prisms A and B are similar.


The cross sections are shaded.


Prism A

volume = 480 cm^3

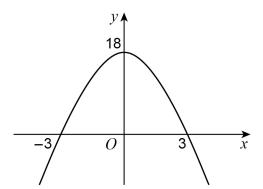
Prism B

length = 30 cm

area of the cross section of A: area of the cross section of B = 4:9

Answer _____

Work out the area of the cross section of B.



 cm^2

24	Show that	$\frac{2\sqrt{6}}{\sqrt{5}} - \frac{\sqrt{3}}{\sqrt{10}}$	can be written in the form	$\frac{c\sqrt{d}}{10}$		Do not write outside the box
	where c and c	d are integers.			[3 marks]	

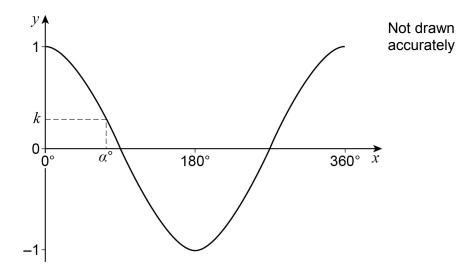
25 A quadratic curve intersects the axes at (-3, 0), (3, 0) and (0, 18)

Not drawn accurately

Work out the equation of the curve.	marks]

Turn over for the next question

Answer


Turn over ▶

26	The area of this triangle is $25\sqrt{3}$ cm ²	
		Not drawn accurately
	w cm $x cm$	
	60°	
	20 cm	
	Work out the value of w . Give your answer in the form $a\sqrt{b}$ where a and b are integers greater	than 1
		[5 marks]
	Answer	
	Answer	_

27 Here is a sketch of $y = \cos x$ for values of x from 0° to 360°

 α° is an acute angle.

 $\cos \alpha^{\circ} = k$

27 (a) Circle the value of $\cos (180^{\circ} - \alpha^{\circ})$

[1 mark]

1-k

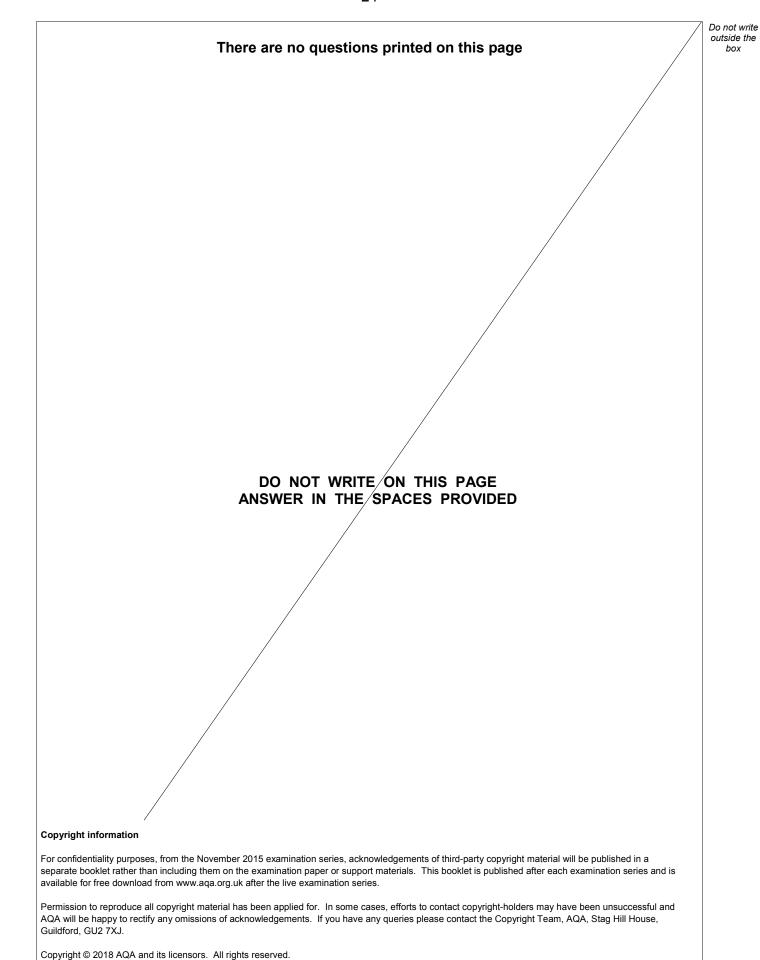
k

-k

-1 - k

27 (b) Circle the value of $\cos (360^{\circ} + \alpha^{\circ})$

[1 mark]


k-1

k + 1

-k

k

END OF QUESTIONS

