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Section A (36 marks)

Answer all the questions.

1 Using standard summation of series formulae, determine the sum of the first n terms of the series 

 ( ) ( ) ( )1 2 4 2 3 5 3 4 6# # # # # #+ + + …,

 where n is a positive integer. Give your answer in fully factorised form. [6]

2 (a) The matrices 
b

a
M
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1

0
=

J
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b

cN 1

1

5

1

= -

-

-J
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KK

N

P

O
OO
 are such that MN = I.

  Find a, b and c. [5]

 (b) State with a reason whether or not N is the inverse of M. [1]

3 In this question you must show detailed reasoning.

 Find dx
x4

1

90

3

1

2
-

y , expressing your answer in terms of r. [4]

4 The roots of the equation x x2 5 7 0
3
- + =  are a, b and c.

 (a) Find 
1 1 1
a b c
+ + . [4]

 (b) Find an equation with integer coefficients whose roots are 2a - 1, 2b - 1 and 2c - 1. [4]
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5 Fig. 5 shows the curve with polar equation ( )c o sr a 3 2 i= +  for GGr i r- , where a is a 

constant.

 

O

B

A
= 0i

 Fig. 5

 (a) Write down the polar coordinates of the points A and B. [2]

 (b) Explain why the curve is symmetrical about the initial line. [2]

 (c) In this question you must show detailed reasoning.

  Find in terms of a the exact area of the region enclosed by the curve. [4]

6 The complex number z satisfies the equation *z z4 11 0i
2
- + = .

 Given that ( )Re z 02 , find z in the form a + bi, where a and b are real numbers. [4]
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Section B (108 marks)

Answer all the questions.

7 Prove by mathematical induction that ( )! ( ) !r r n 1 1
r

n

1

# = + -

=

/  for all positive integers n. [6]

8 (a) Given that the lines r

0
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 meet, determine k. [5]

 (b) In this question you must show detailed reasoning.

  Find the acute angle between the two lines. [4]

9 A linear transformation of the plane is represented by the matrix M
1 2

3m
=

-
J

L
KK

N

P
OO, where m is a 

constant.

 (a) Find the set of values of m for which the linear transformation has no invariant lines through 

the origin. [5]

 (b) Given that the transformation multiplies areas by 5 and reverses orientation, find the invariant 

lines. [3]

10 In this question you must show detailed reasoning.

 The region in the first quadrant bounded by curve coshy x
2

1 2
= , the y-axis, and the line y = 2 is 

rotated through 360° about the y-axis.

 Find the exact volume of revolution generated, expressing your answer in a form involving a 

logarithm. [7]
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11 In this question you must show detailed reasoning.

 In Fig. 11, the points A, B, C, D, E and F represent the complex sixth roots of 64 on an Argand 

diagram. The midpoints of AB, BC, CD, DE, EF and FA are G, H, I, J, K and L respectively.
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 Fig. 11

 (a) Write down, in exponential ( )reii  form, the complex numbers represented by the points A, B, 

C, D, E and F. [2]

 (b) When these complex numbers are multiplied by the complex number w, the resulting complex 

numbers are represented by the points G, H, I, J, K and L.

  Find w in exponential form. [4]

 (c) You are given that G, H, I, J, K and L represent roots of the equation z p
6
= .

  Find p. [2]

12 (a) Given that cos i sinz i i= + , express z
z

1n

n
+  and z

z

1n

n
-  in simplified trigonometric form.

 [2]

 (b) By considering z
z

z
z

1 1
33

+ -

J

L
KK

J

L
KK
N

P
OO

N

P
OO , find constants A and B such that 

  sin cos sin sinA B6 2
3 3i i i i= + . [6]
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13 (a) Using exponentials, prove that sinh cosh sinhx x x2 2= . [2]

 (b) Hence show that if ( )f sinhx x2= , then f ″( ) coshx x2 2= . [2]

 (c) Explain why the coefficients of odd powers in the Maclaurin series for sinh x2  are all zero. [2]

 (d) Find the coefficient of xn  in this series when n is a positive even number. [3]

14 Solve the simultaneous differential equations

 
t

x
x y2 4

d
d
+ = ,  

t
x y

y
3 5

d

d
+ = ,

 given that when t = 0, x = 0 and y = 1. [11]

15 (a) Show that the three planes with equations

  

x y z

x y z

x y z

3 12

2 5 11

2 2 9

m+ + =-

+ + =-

- + =-

  where m is a constant, meet at a unique point except for one value of m which is to be 

determined. [3]

 (b) In the case m = -2, use matrices to find the point of intersection P of the planes, showing your 

method clearly. [3]

 The line l has equation 
x 1- z 2+y

2 1

1

2
=
-

-
=
-

.

 (c) Find a vector equation of l. [2]

 (d) Find the shortest distance between the point P and l. [4]

 (e) (i) Show that l is parallel to the plane x y z2 2 9- + =- . [3]

  (ii) Find the distance between l and the plane x y z2 2 9- + =- . [2]
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16 The population density P, in suitable units, of a certain bacterium at time t hours is to be modelled 

by a differential equation. Initially, the population density is zero, and its long-term value is A.

 (a) One simple model is to assume that the rate of change of population density is directly 

proportional to A -  P.

  (i) Formulate a differential equation for this model. [1]

  (ii) Verify that ( )P A 1 e
kt

= -
- , where k is a positive constant, satisfies

   • this differential equation,

   • the initial condition,

   • the long-term condition. [3]

 An alternative model uses the differential equation

 
( )

( )
t

P

t t

P
t

1d
d

Q
2

-

+

= ,

 where Q(t) is a function of t.

 (b) Find the integrating factor for this differential equation, showing that it can be written in the

  form 
t

t
1

2
+

. [8]

 (c) Suppose that Q(t) = 0.

  (i) Show that P
t

At

1
2

=

+

. [4]

  (ii) Find the time predicted by this model for the population density to reach half its long-

term value. Give your answer correct to the nearest minute. [2]

 (d) Now suppose that ( )t
t

t

1
Q

e
t

2
=

+

-

.

  Show that P
t

At t

1

e
t

2
=

+

-
-

. [You may assume that lim t 0e
t

t
=

"3

- .] [5]

 It is found that the long-term value of P is 10, and P reaches half this value after 37 minutes.

 (e) Determine which of the models proposed in parts (c) and (d) is more consistent with these 

data. [2]

END OF QUESTION PAPER
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