

General Certificate of Education June 2010

Physics A
Medical Physics
Unit 5

PHYA5/2B

Final

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Instructions to Examiners

- Give due credit for alternative treatments which are correct. Give marks for what is correct in accordance with the mark scheme; do not deduct marks because the attempt falls short of some ideal answer. Where marks are to be deducted for particular errors, specific instructions are given in the marking scheme.
- Do not deduct marks for poor written communication. Refer the scripts to the Awards meeting if poor presentation forbids a proper assessment. In each paper, candidates are assessed on their quality of written communication (QWC) in designated questions (or part-questions) that require explanations or descriptions. The criteria for the award of marks on each such question are set out in the mark scheme in three bands in the following format. The descriptor for each band sets out the expected level of the quality of written communication of physics for each band. Such quality covers the scope (eg relevance, correctness), sequence and presentation of the answer. Amplification of the level of physics expected in a good answer is set out in the last row of the table. To arrive at the mark for a candidate, their work should first be assessed holistically (ie in terms of scope, sequence and presentation) to determine which band is appropriate then in terms of the degree to which the candidate's work meets the expected level for the band.

QWC	descriptor	mark range
Good - Excellent	see specific mark scheme	5-6
Modest - Adequate	see specific mark scheme	3-4
Poor - Limited	see specific mark scheme	1-2

The description and/or explanation expected in a good answer should include a coherent account of the following points:

see specific mark scheme

Answers given as bullet points should be considered in the above terms. Such answers without an 'overview' paragraph in the answer would be unlikely to score in the top band.

- An arithmetical error in an answer will cause the candidate to lose one mark and should be annotated AE if possible. The candidate's incorrect value should be carried through all subsequent calculations for the question and, if there are no subsequent errors, the candidate can score all remaining marks.
- The use of significant figures is tested **once** on each paper in a designated question or partquestion. The numerical answer on the designated question should be given to the same number of significant figures as there are in the data given in the question or to one more than this number. All other numerical answers should not be considered in terms of significant figures.
- Numerical answers **presented** in non-standard form are undesirable but should not be penalised. Arithmetical errors by candidates resulting from use of non-standard form in a candidate's working should be penalised as in point 3 above. Incorrect numerical prefixes and the use of a given diameter in a geometrical formula as the radius should be treated as arithmetical errors.
- Knowledge of units is tested on designated questions or parts of questions in each a paper. On each such question or part-question, unless otherwise stated in the mark scheme, the mark scheme will show a mark to be awarded for the numerical value of the answer and a further mark for the correct unit. No penalties are imposed for incorrect or omitted units at intermediate stages in a calculation or at the final stage of a non-designated 'unit' question.
- All other procedures including recording of marks and dealing with missing parts of answers will be clarified in the standardising procedures.

GCE Physics, Specification A, PHYA5/2B, Section B, Medical Physics

Question 1		
(a)	first correct diverging ray ✓	•
	second correct ray and image labelled or clearly shown (also CE mark) ✓	2
(b)	reciprocal of the focal length ✓	1
(c) (i)	myopia or shortsight ✓	1
(c) (ii)	1/u + 1/(-0.15) = 1/(-0.56) ✓	
	u = 0.2049 (m) ✓	3
	correct sig figs – 2 sig figs correct answer 0.20 (m) ✓	
(d)	power and axis of the cylindrical lens - any 2 bold terms to get the mark ✓	1
	Total	8

Question 2			
(a)	(i)	longitudinal/pressure waves in the ear canal ✓	
		forces eardrum into mechanical vibrations ✓	
		(mechanical) vibrations (passed through middle ear) by a lever system/series of bones/named bones to the oval window ✓	max 3
		sets up pressure waves in fluid in cochlea ✓	
(a)	(ii)	force increased by the action of the lever system/series of bones/named bones; value F × 1.5 ✓	
		area of oval window << area of the eardrum ; value A/20 ✓	max 2
		effect of pinna in increasing intensity in ear canal ✓	
(b)		$46 = 10 \times \log (1/(1.0 \times 10^{-12})) \checkmark$	
		$I = 4.0 \times 10^{-8} \checkmark$	3
		W m ⁻² ✓	
(c)		dBA scale is frequency dependent to match the response of the ear ✓	
		ear more sensitive (than $I_{\text{o}})$ for a range of frequencies between 1 and about $6\text{kHz}~\checkmark$	2
		Total	10

Question 3		
(a)	general shape, must be both positive and negative values ✓	
	action potential axis scale and unit – allow -70 to +30, or -90 to +20 mV (these values will be consistent in part a and part b) minimum -90 maximum +45 \checkmark	3
	time scale and unit 0 to 6 ms – this will depend on curve drawn, pulse lasting no less than 1 ms and no more than 6 ms ✓	

(b) The candidate's writing should be legible and the spelling. punctuation and grammar should be sufficiently accurate for the meaning to be clear.

The candidate's answer will be assessed holistically. The answer will be assigned to one of three levels according to the following criteria.

High Level (Good to excellent): 5 or 6 marks

The information conveyed by the answer is clearly organised, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question.

The candidate provides a correct and detailed description of the movement of ions into and out of the fibre. They include the terms depolarisation and repolarisation with reference to change in potential. Final mention is made to the slower process to restore the equilibrium concentrations.

Intermediate Level (Modest to adequate): 3 or 4 marks

The information conveyed by the answer may be less well organised and not fully coherent. There is less use of specialist vocabulary, or specialist vocabulary may be used incorrectly. The form and style of writing is less appropriate.

The description of ion movement and the terms depolarisation and repolarisation might not be clearly named, but the candidate refers to the change in potential, although actual values might not be included. There may be mention of a final movement restoring equilibrium.

Low Level (Poor to limited): 1 or 2 marks

The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The form and style of writing may be only partly appropriate.

Some reference to ion movement and a resulting change in potential. One of the terms depolarisation or repolarisation might be included.

The explanation expected in a competent answer should include a coherent selection of the following points concerning the physical principles involved and their consequences in this case.

Points which can be used to support the explanation:

- at resting potential, high concentration of K⁺ ions inside and Na⁺ outside
- when stimulated, membrane becomes permeable to Na⁺ ions entering the core increasing membrane potential
- reverse polarisation from 0 mV to + 30 mV; but allow depolarisation
- membrane becomes impermeable to Na⁺ ions and permeable to K⁺ ions leaving the core
- reducing membrane potential to -70 mV, repolarisation
- after this, a much slower process returns the axon to its initial state with Na⁺ ions outside and K⁺ ions inside

Total

9

max 6

Question 4		
(a)	(head) placed in strong/high intensity/super conducting magnets magnetic field ✓	
	supplied radio pulse excite H nuclei ✓	
	when H nuclei de-excite/change spin/change alignment they emit radio signal/em radiation/photons ✓	max 3
	these signals are detected and passed to computer ✓	
	gradient in static field to allow location to be determined/magnetic field aligns H nuclei ✓	
(b)	example answers:	
	MR non-ionising radiation – ionising radiation in CT more danger to living cells ✓	
	MR can give multi-plane images from same scan – CT needs new scan for each image ✓	4
	MR gives better resolution between tissue types, better resolution picture ✓	
	MR gives real time image CT scan needs to rotate to produce final image ✓	
	Total	7