Pearson Edexcel

Mark Scheme (Results)
November 2020

Pearson Edexcel International GCSE Mathematics A (4MA1)
Paper 2F

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2020
Publications Code 4MA1_2F_2011_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

- Abbreviations

- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission

- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from question 6d, 9b, 15, 18, 21c (where the mark scheme states otherwise) the correct answer, unless clearly obtained from an incorrect method, should be taken to imply a correct method.

\mathbf{Q}	Working	Answer	Mark	Notes
$\mathbf{1}$ a	26 or 64	1	B1 or both 26 and 64 with no others	
b		21 or 39	1	B1 or both 21 and 39 with no others
c		17 or 31	1	B1 or both 17 and 31 with no others
d	1 or 64	1	B1 or both 1 and 64 with no others	
				Total 4 marks

$\mathbf{2} \mathrm{a}$		3000	1	B1
b		6.5	1	B1
				Total 2 marks

$\mathbf{3}$ a			2	M1for at least 2 correct tallies or frequencies
		$2,5,4,3,2$		A1mark frequencies only - in either column
b		1	1	B1 allow ft from (a)
c		4	1	B1
			Total 4 marks	

$\mathbf{4} \mathrm{a}$		New York	1	B1 accept -15
b		25	1	B1 accept -25
c		-28	1	B1
				Total 3 marks

$\mathbf{5}$ a		$0.003,0.035,0.5,0.539,0.9$	1	B1
b		60	1	B1
c		$8 \frac{4}{7}$	1	B1
	oe			
d	$0.95-0.68$ or $\frac{95}{100}-\frac{68}{100}$ or $\frac{19}{20}-0.68$ oe		2	M1
		$0.27 \frac{27}{100}$ or 27%		
			A1	

6 a		23	1	B1	
b		Added 4	1	B1	accept +4 , 4 more, oe, $4 \mathrm{n}-1$ (need to know 4 and we need to add/go up oe)
C	$\begin{aligned} & \text { (23) } 27,31,35,39,43,47,51,55,59,63,67,71 \\ & \text { OR } 4 n-1=70 \end{aligned}$		2	M1	allow list of numbers going up in 4's up to 71 or more (allow one error)
		71		A1	
d	No and identifying all terms in sequence are odd OR No and method to count on as far as 95 (or clearly showing 95) OR No and method to find n when term is 96 e.g. solving $4 n-1=96$	No with reason	1	B1	must have 'No' oe or 'is not' oe and a reason.
					Total 5 marks

7 a	a		$(3,-1)$	1	B1	
	b		(\times) at $(-2,-4)$	1	B1	condone missing label as long on unambiguous
c	c		$(-1,2)$	2	B2	B1 for $(-1$, a) where $\mathrm{a} \neq 2$ or ($b, 2$) where $b \neq-1$
d	d		$\mathrm{x}=4$ drawn	1	B1	
						Total 5 marks

$\mathbf{8}$			3	B3For the correct time of 1350 or 1.50 pm or 1.50 in the afternoon oe
			(B2 for 1.50 or 1.50 am or stating 2 hours 40 mins or 160 mins or intention to add all 4 times onto 11.10	
B1 for intention to add all 4 times together or evidence of intention to add on 2 or 3 times to 1110)				
		1350		Total 3 marks

9 ai		33	1	B1	accept $32-34$
ii		15	1	B1	accept $15-16$
b	$\begin{aligned} & \hline \text { e.g. } 820 \div 10 \times \text { " } 33 \text { " }(=2706) \\ & \text { or } 2850 \div 50 \times \text { " } 15 \text { " }(=855) \end{aligned}$		2	M1	method to convert 820 metres to feet or 2850 feet to metres, allow ft from (ai) or (aii) or a value for 820 m to feet in range $(2620-2740)$ or a value for 2850 feet to m in range $(830-900)$
		2850 feet supported by working		A1	2850 selected (could be unambiguously circled, underlined or stated) with correct working and figures as above to justify result, ft from part (ai) or (aii)
					Total 4 marks

| $\mathbf{1 0}$ | e.g. $360-(30+45+165)(=120)$ | 4 | M1 method to calculate One Stop Shoes angle |
| :--- | :--- | :--- | :--- | :--- |
| | e.g. $\frac{30}{45} 18(=12)$ or $\frac{30}{120}, 48(=12)$ oe | | M1 method to calculate ABC Shoes frequency |
| | e.g. $165 \div 45 \times 18(=66)$ oe or $165 \div 30 \times$ " 12 " $(=66)$ oe
 or $165 \div$ " $120 " \times 48(=66)$ oe or $18+48$ having shown
 or implied that $120+45=165$ and a clear intention that
 this is the method for Superfast Trainers $(=66)$ | M1 method to calculate Superfast Trainers
 frequency | |
| | | $12,120,66$ | A1 fully correct table |

$\mathbf{1 1}$	0.23×450 oe		2	M1 or for an answer of 553.5 or 346.5
		103.5		A1

13	$\begin{aligned} & \text { eg } \frac{1}{2} \times(20+26) \times 12(=276) \\ & \text { or } 12 \times 20+\frac{1}{2} \times(26-20) \times 12(=276) \\ & \text { or } 12 \times 26-\frac{1}{2} \times(26-20) \times 12(=276) \end{aligned}$		5	M2	complete method to find the area of the shape M1 for method to find the area of a rectangle $12 \times 20(=240)$ or $12 \times 26(=312)$ or the area of the triangle $\frac{1}{2} \times(26-20) \times 12(=36)$
	"276" $\div 20$ (= 13.8)			M1	(indep) method to find the number of tins for their area ft any value from a calculation that includes at least two of $20,26 \& 12$
	$\begin{aligned} & \text { eg } 3 \times \$ 40+2 \times \$ 13(=\$ 146) \text { or } 14 \times \$ 13(=\$ 182) \\ & \text { or } 4 \times \$ 40(=\$ 160) \end{aligned}$				method to calculate a cost for their number of tins dep on previous M1 (NB: use $\mathrm{n} \times \$ 40$ where n is the next multiple of 4 greater than the number of tins needed, divided by 4)
		146		A1	cao dep on accurate figures
					Total 5 marks

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline 15 & \frac{2}{5} \times \frac{20}{11} \text { or eg } \frac{8}{20} \div \frac{11}{20} & 2 & \begin{array}{l}\text { M1 } \\
\begin{array}{l}\text { For inverting } \frac{11}{20} \text { and a clear } \\
\text { intention to multiply or for writing } \\
\text { both fractions correctly over the } \\
\text { same common denominator }\end{array} \\
\hline\end{array} \begin{array}{l}\frac{2}{5} \times \frac{20}{11}=\frac{40}{55}=\frac{8}{11} \text { or } \\
\frac{2}{\not 夕^{1}} \times \frac{2 \not \emptyset^{4}}{11}=\frac{8}{11} \text { or } \\
\frac{8}{20} \div \frac{11}{20}=\frac{8}{11}\end{array} & \begin{array}{l}\text { Clearly } \\
\text { shown }\end{array}
$$

dep on M1

continued to clearly show given

result\end{array}\right]\)| Total 2 marks |
| :--- |

16 a		$50<\mathrm{L} \leq 60$	1	B1	oe eg 50-60
b	$\begin{aligned} & 25 \times 6+35 \times 26+45 \times 31+55 \times 40+65 \times 17 \\ & (150+910+1395+2200+1105)(=5760) \end{aligned}$			M2	For correct products using midpoints (allow one error) with intention to add. M1 for products using frequency and a consistent value within the range (allow one error) with intention to add or correct products using midpoints (allow one error) without addition
	" 5760 " \div " $120 "$			M1	dep on M1
		48	4	A1	
					Total 5 marks

$\mathbf{1 7} \mathrm{a}$	$150 \div 6 \times 14 \mathrm{oe}$		2	M1
b	$630 \div 90 \times 6 \mathrm{oe}$	350		A1
			2	M1
c	$162 \div(2+7) \times 2 \mathrm{oe}$	42		A1
		36	2	M1
				A1

18	$\mathrm{ADC}=180-58(=122)$ or $\mathrm{EDF}=122$ or $\mathrm{CDE}=58$ or $\mathrm{ADF}=58$		5		may be seen marked on the diagram
	$\begin{aligned} & \text { e.g. DEF }=58 \div 2 \text { or } \\ & \text { DEF }=(180-122) \div 2 \\ & \hline \end{aligned}$				complete method to find angle DEF
		29		A	
				B2 dep on M2 for fully correct reasons for their method (B1 dep on M1 for one correct reason stated and used) e.g. Allied angles, co-interior angles, Alternate angles, Corresponding angles, Vertically opposite angles are equal (or Vertically opposite angles are equal), Angles on a straight line add up to 180° (or angles on a straight line add to 180°), Sum of two angles in a triangle are equal to opposite exterior angle, Angles in a triangle add up to 180° (or Angles in a triangle add up to $\underline{180}^{\circ}$), Base angles in an isosceles triangle Angles in a quadrilateral add up to 360 . (accept " 4 -sided shape"or parallelogram) Opposite angles of a parallelogram are equal	

$\mathbf{1 9}$	$76 \div(5+2-3)(=19)$ $5 \mathrm{x}+2 \mathrm{x}-3 \mathrm{x}=76, \mathrm{x}=76 \div 4(=19)$ oe		4	M1
	$3 \times " 19 "(=57)$			M1
	$" 57 "-48.5(0)$			M1
		$8.5(0)$		A1
			Total 4 marks	

$\mathbf{2 2}$	$\tan \mathrm{x}=\frac{3.4}{4.7}$ oe eg $\cos \mathrm{x}=\frac{4.7}{\sqrt{3.4^{2}+4.7^{2}}}$			M1 or $\sin \mathrm{x}=\frac{3.4 \sin 90}{\sqrt{3.4^{2}+4.7^{2}}}$ oe
	$(\mathrm{x}=) \tan ^{-1}\left(\frac{3.4}{4.7}\right)$ oe eg $(\mathrm{x}=) \cos ^{-1}\left(\frac{4.7}{\sqrt{3.4^{2}+4.7^{2}}}\right)$			M1 \quad or $(\mathrm{x}=) \sin ^{-1}\left(\frac{3.4 \sin 90}{\sqrt{3.4^{2}+4.7^{2}}}\right) \mathrm{oe}$
		35.9	3	A1 \quad accept $35.7-36.1$

23	$8.5^{2}-(8 \div 2)^{2}(=56.25) \text { or } \cos x=\frac{4}{8.5}$		4		or eg $\cos A=\frac{8^{2}+8.5^{2}-8.5^{2}}{2 \times 8 \times 8.5}$
	$\sqrt{" 56.25 "}(=7.5) \text { or } x=\cos ^{-1}\left(\frac{4}{8.5}\right)(=61.927 \ldots)$				or eg $\begin{aligned} & (\mathrm{A}=) \cos ^{-1}\left(\frac{8^{2}+8.5^{2}-8.5^{2}}{2 \times 8 \times 8.5}\right)(61.927 \ldots) \\ & (\text { other angle }=56.144 \ldots) \end{aligned}$
	$8 \times$ " 7.5 " $\div 2$ oe or $0.5 \times 8 \times 8.5 \times \sin$ " $61.927 \ldots$.."			M1	or eg $0.5 \times 8.5 \times 8 \times \sin 61.927$...oe
		30		A1	
					Total 4

24	$\pi \times 3^{2} \times \mathrm{h}=72 \pi$ oe		5		Allow use of $3.14 \ldots$ or $\frac{22}{7}$ for π and use of 226 ... for 72π
	$\mathrm{h}=72 \pi \div\left(\pi \times 3^{2}\right)$ oe or $\mathrm{h}=8$			M1	method to isolate h (may be seen in several stages)
	$\begin{aligned} & 2 \times \pi \times 3^{2}(=18 \pi \text { or } 56.54 \ldots) \text { or } 2 \times \pi \times 3 \times " 8 \text { " oe }(=48 \pi \text { or } \\ & 150-151) \end{aligned}$			M1	method to find the area of the two circles or curved surface area - use of their h, dep on M1 (NB may get this mark for area of 2 circles with no previous marks awarded)
	$2 \times \pi \times 3^{2}+2 \times \pi \times 3 \times$ " 8 " oe $(=66 \pi)$			M1	complete method to find the total surface area ft their h dep on 1 st M 1 , including intention to add, to find the total surface area
		207		A1	accept 207-208
					Total 5 marks

Pearson Education Limited. Registered company number 872828

