Write your name here			
Surname	Other names		
Edexcel GCSE	Centre Number Candidate Number		
Chemistry/Science Unit C1: Chemistry in Our World			
•			
•			
•	in Our World Higher Tier		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 60.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 0 2 4 0 A 0 1 2 0

Turn over ▶

The Periodic Table of the Elements

0	4 He helium	20 Ne neon 10	40 Ar argon 18	84 Kr krypton 36	131 Xe xenon 54	[222] Rn radon 86	fully
		19 F fluorine 9	35.5 CI chlorine 17	80 Br bromine 35	127 	[210] At astatine 85	orted but not
9		16 O oxygen 8	32 S sulfur 16	79 Selenium 34	128 Te tellurium 52	[209] Po polonium 84	ve been repo
2		14 N nitrogen 7	31 P phosphorus 15	75 As arsenic 33	122 Sb antimony 51	209 Bi bismuth 83	s 112-116 ha
4		12 C carbon 6	28 Si silicon 14	73 Ge germanium 32	119 Sn tin 50	207 Pb lead 82	mic number
က		11 B boron 5	27 Al aluminium 13	70 Ga gallium 31	115 In indium 49	204 T thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
	•			65 Zn zinc 30	112 Cd cadmium 48	201 Hg mercury 80	Elem
				63.5 Cu copper 29	108 Ag silver 47	197 Au gold 79	Rg roentgenium
				59 nickel 28	106 Pd palladium 46	195 Pt platinum 78	Ds damstadtum 110
				59 Co cobalt 27	103 Rh rhodium 45	192 Ir iridium 77	[268] Mt meitnerium 109
	hydrogen			56 iron 26	Ru ruthenium 44	190 Os osmium 76	[277] Hs hassium 108
_				55 Mn manganese 25	[98] Tc technetium 43	186 Re rhenium 75	[264] Bh bohrium 107
		mass ɔol umber		52 Cr chromium 24	96 Mo molybdenum 42	184 W tungsten 74	[266] Sg seaborgium 106
	Key	relative atomic mass atomic symbol name atomic (proton) number		51 V vanadium 23	93 Nb niobium 41	181 Ta tantalum 73	[262] Db dubnium 105
		relativ ato atomic		48 Ti tttanium 22	91 Zr zirconium 40	178 Hf hafnium 72	Rf rutherfordium 104
	•			45 Sc scandium 21	89 Y yttrium 39	139 La* lanthanum 57	[227] Ac* actinium 89
7		9 Be beryllium 4	24 Mg magnesium 12	40 Ca calcium 20	Sr strontium 38	137 Ba barium 56	[226] Ra radium 88
~		7 Li Ilthium 3	23 Na sodium 11	39 K potassium 19	85 Rb rubidium 37	133 Cs caesium 55	[223] Fr francium 87

^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.

Answer ALL questions

Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

The reactivity series

1	The list shows some	e metals in	reactivity	series	order with	the most	reactive at the top.	
---	---------------------	-------------	------------	--------	------------	----------	----------------------	--

most reactive calcium

magnesium aluminium

zinc iron

copper

least reactive gold

(a) Which of these metals can be found as the uncombined metal in the Earth's crust?

Put a cross (\boxtimes) in the box next to your answer.

(1)

- A calcium
- **B** gold
- X **D** zinc
- (b) Metals are extracted by the reduction of their ores.

State the meaning of the term **reduction**.

(1)

(c) Aluminium is extracted by the electrolysis of a molten mixture of its ore (bauxite) and cryolite.

Iron is extracted by heating a mixture of its ore and carbon.

Explain why electrolysis is used to extract aluminium but is not used to extract iron.

(2)

(d) An alloy of aluminium with magnesium is used for parts of aeroplanes.

Explain why the aluminium alloy is stronger than pure aluminium.

(2)

(e) When aluminium corrodes, it reacts with oxygen to form aluminium oxide, Al₂O₃.

Complete the balancing of this equation by putting numbers in the spaces provided.

(2)

(Total for Question 1 = 8 marks)

	Carbon dioxide levels in the atmosphere	
2	Scientists believe that, about 4500 million years ago, the Earth was very much hotter than it is now.	
	The atmosphere then was very different from that on Earth today.	
	(a) Explain why it is difficult to be precise about the composition of the Earth's early	
	atmosphere.	(2)
	(b) As the Earth cooled, oceans formed.	
	How did this affect the composition of the atmosphere?	(4)
		(1)
	(c) The first plants appeared about 400 million years ago.	
	Explain how the growth of these plants affected the composition of the	
	atmosphere.	(2)
	(d) What is the current approximate percentage of carbon dioxide in the Earth's atmosphere?	
	Put a cross (⊠) in the box next to your answer.	
	and the second temporal and the second temporal and the second temporal and tempora	(1)
	■ B 1.0	
	□ 10	

State another cause of increa	asing amounts of carbon dioxide in the atmosphere.	
	(1)
	(Total for Question 2 = 7 marks	3)

Hydrocarbons

3 (a) During fractional distillation, crude oil is separated into a number of fractions.

The table shows the relative amount of these fractions that can be obtained from crude oil.

The table also shows the relative demand for each of these fractions.

fraction	relative amount obtained	relative demand
LPG	2	6
petrol	12	29
kerosene	16	11
diesel	24	29
fuel oil and bitumen	46	25

(i) For which fractions does the demand exceed the supply?

Put a cross (☒) in the box next to your answer.

(1)

- A kerosene, diesel, fuel oil and bitumen
- **B** LPG, petrol and diesel
- ☑ C LPG, petrol and kerosene
- D petrol, diesel, fuel oil and bitumen
- (ii) In another process, called cracking, large molecules in some fractions are converted into smaller molecules.

Explain why cracking is needed.

(2)

(b) The table shows the number of carbon atoms per molecule in the substances present in each of the fractions.

fraction	number of carbon atoms per molecule
LPG	1 – 4
petrol	4 – 12
kerosene	9 – 16
diesel	15 – 25
fuel oil and bitumen	over 25

Complete the sentence by putting a cross (
) in the box next to your answer.

(1)

As the number of carbon atoms in the molecules of a hydrocarbon increases

- A the number of hydrogen atoms in the molecule remains the same
- **B** the boiling point of the hydrocarbon increases
- ☑ C the hydrocarbon becomes easier to burn
- **D** the viscosity of the hydrocarbon decreases
- (c) The structure of a molecule of ethene is

$$\begin{array}{c} H \\ C = C \\ \end{array}$$

(i) What is the formula of a molecule of ethene?Put a cross (⋈) in the box next to your answer.

(1)

- A CH,
- \square **B** C_2H_4
- \square **C** C_nH_{2r}
- \square **D** $(CH_2)_n$

(Total for Question 3 = 11 i	marks)
environment.	(2)
(ii) Some hydrocarbon fuels can contain sulfur impurities. Explain how the product of combustion of these sulfur impurities affects the	2
carbon dioxide in the atmosphere.	(2)
Many power stations generate electricity by burning fossil fuels, such as fuel oil. This process adds carbon dioxide to the atmosphere. (i) Explain why some people are concerned about the increase in the amount of	
Write a balanced equation for this reaction.	(2)

Calcium compounds

- 4 Calcium carbonate is an important raw material in the chemical industry. It exists naturally as chalk, marble and limestone.
 - (a) Which row of the table correctly identifies chalk, marble and limestone as sedimentary or metamorphic rocks?

Put a cross (☒) in the box next to your answer.

(1)

		chalk	marble	limestone
×	Α	sedimentary	sedimentary	metamorphic
×	В	metamorphic	metamorphic	sedimentary
×	С	sedimentary	metamorphic	sedimentary
×	D	metamorphic	sedimentary	metamorphic

(b) The diagram shows reactions of some calcium compounds.

(i) Both calcium carbonate and calcium oxide are white solids.

Suggest how you could show that, when calcium carbonate is heated, a reaction takes place.

(2)

(iii) Write the balanced equation for the reaction of calcium hydroxide with carbon dioxide (step C). (iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)	(ii) Describe what you would observe when water is added, one drop at a time cold calcium oxide (step B).	
(iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		(2)
(iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		
(iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		
(iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		
(iv) State the common name for calcium hydroxide solution. (1) Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		
Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)		(2)
Explain why calcium carbonate removes acidic gases from emissions in power station chimneys. (2)	(iv) State the common name for calcium hydroxide solution	
station chimneys. (2)	(iv) State the common name for calcium hydroxide solution.	(1)
station chimneys. (2)		
(Total for Question 4 = 10 marks)		(2)
(Total for Question 4 = 10 marks)		
(Total for Question 4 = 10 marks)		
(Total for Question 4 = 10 marks)		
(Total for Question 4 = 10 marks)		
	(Total for Question 4 = 10	marks)

Electrolysis Electrolysis occurs when solutions of some compounds are decomposed by passing direct electric current through them.

(a) Sodium chloride solution was electrolysed.

The reaction produced chlorine and hydrogen.

The remaining solution contained sodium hydroxide, NaOH.

(i) State a hazard associated with chlorine ga
--

(1)

(ii) Describe a test that can be used to identify a sample of gas as chlorine.	
--	--

(2)

((iii)	State	а	use	of	ch	lorine.
- 1	111/	Juli	ч	usc.	\circ	CIII	

(1)

(iv) Complete and balance the equation for the overall reaction taking place when sodium chloride solution is electrolysed.

(2)

...... NaCl +
$$H_2O \rightarrow$$
 + +

*(b) Water was decomposed by electrolysis in the apparatus shown.

The water decomposed into hydrogen and oxygen. After five minutes, the volumes of hydrogen and oxygen in the tubes were measured.

Two further experiments were carried out changing only one factor in each experiment. All other factors were kept the same.

The table shows the conditions and results of all three experiments.

experiment	time / minutes	current / amps	volume of hydrogen / cm³	volume of oxygen / cm³
1	5	0.50	20.0	10.0
2	10	0.50	40.0	20.0
3	5	0.75	30.0	15.0

Use these results of electrolysis to compare the volumes of hydrogen and oxygen formed and to show the effect of changing the time and the current on the volumes of these gases.	١	
volumes of these gases.	(6)	
(Total for Question 5 = 12 ma	arks)	

Alternative fuels 6 Known crude oil deposits are being used up. In the past, most of our fuels, such as petrol, have been obtained from crude oil. (a) Fuels such as those obtained from crude oil are non-renewable. Efforts are being made to replace these types of fuels with renewable fuels. Explain the difference between **non-renewable** and **renewable** fuels. (2) *(b) Evaluate the advantages and disadvantages of using bioethanol, instead of petrol, as a fuel for cars. (6)

(c) The photograph shows one of the new buses for London.

The bus uses hydrogen as a fuel.

There are six hydrogen fuel tanks, which can be seen on the roof of the bus. The hydrogen from the tanks reacts with oxygen from the air in a fuel cell to release energy to power the bus.

(i) Write the balanced equation for the overall reaction that takes place when the hydrogen reacts with oxygen in the fuel cell.

(3)

(ii) Like all fuels, hydrogen, when mixed with air and ignited, explodes.

Apart from the possibility of an explosion, state another disadvantage of using hydrogen, rather than diesel, as a fuel for buses.

(1)

(Total for Question 6 = 12 marks)

TOTAL FOR PAPER = 60 MARKS

