Surname	Other	names
Edexcel GCE	Centre Number	Candidate Number
Chemistr Advanced Subsidi Unit 2: Application	ary	les of Chemistry
Thursday 19 January 20 Time: 1 hour 30 minute		Paper Reference 6CH02/01

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

1	This question concerns the shapes of molecules and ions:	
	A linear	
	B trigonal planar	
	C pyramidal	
	D tetrahedral	
	Select from A to D the shape of	
	(a) boron trichloride, BCl ₃	
	\mathbf{X} A	(1)
	\mathbb{B}	
	C C	
	$\mathbf{\Sigma}$ D	
	(b) the ammonium ion, NH_4^+	(1)
	A A	
	⊠ B	
	C C	
	\square D	
	(c) carbon dioxide, CO_2	
	\blacksquare A	(1)
	B	
	C C	
	\square D	
	(Total for Question $1 = 3$ m	narks)

2	Tetrach	lloromethane, CCl ₄ , is a
		polar molecule with polar bonds.
	B	polar molecule with non-polar bonds.
	C	non-polar molecule with polar bonds.
	D	non-polar molecule with non-polar bonds.
		(Total for Question $2 = 1$ mark)
-		
3		fference in boiling temperature between methane ($T_b = 109$ K) and ($T_b = 185$ K) is best explained by the different numbers of
	A A	protons.
	B	electrons.
	C	covalent bonds.
	D D	hydrogen bonds.
		(Total for Question 3 = 1 mark)
4	What	a the encidencian number of encourses in OE 2
4		s the oxidation number of oxygen in OF_2 ?
	B	
	C	
	D 🛛	
		(Total for Question 4 = 1 mark)
5	In which agent?	ch of the following reactions is sulfuric(IV) acid, H ₂ SO ₃ , acting as an oxidizing
	A	$2NaOH + H_2SO_3 \rightarrow Na_2SO_3 + 2H_2O$
	B	$2FeCl_3 + H_2SO_3 + H_2O \rightarrow 2FeCl_2 + H_2SO_4 + 2HCl$
	C	$2H_2S + H_2SO_3 \rightarrow 3H_2O + 3S$
	D 🛛	$H_2SO_3 \rightarrow H_2O + SO_2$
		(Total for Question 5 = 1 mark)

-		I is soluble in water. The best explanation for this is
6	Ethanc	i is solution in water. The Dest explanation for this is
	🖾 A	ethanol molecules form hydrogen bonds with water molecules.
	B	ethanol molecules form London (dispersion) forces with water molecules.
	C	ethanol molecules form permanent dipole interactions with water molecules.
	D 🛛	ethanol and water are miscible liquids.
		(Total for Question 6 = 1 mark)
7	-	a titration, when the solution in a pipette is transferred to a conical flask, a small t of liquid remains in the tip of the pipette. This situation should be dealt with by
	🖾 A	leaving the liquid in the pipette which is calibrated to allow for it.
	B	slightly over-filling the pipette to compensate for the additional volume.
	C	carefully blowing the liquid out of the pipette to ensure that it is empty.
	D 🛛	repeating the titration.
		(Total for Question 7 = 1 mark)
		(Total for Question 7 = 1 mark)
8		(Total for Question 7 = 1 mark) lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is
8		lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the
8	measu	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is
8	measur A B	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$
8	measur A B	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$
8	measur ☑ A ☑ B ☑ C	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$
8	measur ☑ A ☑ B ☑ C	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.48\%$
	measur A A C D A serie	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.48\%$
	measur A A C D A serie	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.48\%$ (Total for Question 8 = 1 mark) es of titrations is carried out using the same conical flask. Before carrying out
	Measur A B C D A serie each ti	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.48\%$ (Total for Question 8 = 1 mark) es of titrations is carried out using the same conical flask. Before carrying out tration, the conical flask must be
	Measur A B C C D A seric each ti A	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.24\%$ $\pm 0.48\%$ (Total for Question 8 = 1 mark) es of titrations is carried out using the same conical flask. Before carrying out tration, the conical flask must be rinsed with ethanol.
	 measure A B C D A serie each time ach time	lerance of a 25 cm ³ pipette is ± 0.06 cm ³ . The percentage error in the rement of 25 cm ³ using this pipette is $\pm 0.06\%$ $\pm 0.12\%$ $\pm 0.24\%$ $\pm 0.24\%$ $\pm 0.48\%$ (Total for Question 8 = 1 mark) es of titrations is carried out using the same conical flask. Before carrying out tration, the conical flask must be rinsed with ethanol. rinsed with distilled or deionised water.

	cess calcium is added to water, effervescence occurs and clear colourless solution is formed. n orange-red flame is seen. yellow flame is seen. (Total for Question 10 = 1 mark) nples of magnesium nitrate, Mg(NO ₃) ₂ , and calcium nitrate, Ca(NO ₃) ₂ , are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide nd oxygen.
$\square \mathbf{B} = \mathbf{a}$ $\square \mathbf{C} = \mathbf{a}$ $\square \mathbf{D} = \mathbf{a}$ $\square \mathbf{D} = \mathbf{a}$ $\square \mathbf{A} = \mathbf{b}$ $\square \mathbf{B} = \mathbf{b}$ $\square \mathbf{a}$	cloudy suspension is formed. n orange-red flame is seen. yellow flame is seen. (Total for Question 10 = 1 mark) nples of magnesium nitrate, Mg(NO ₃) ₂ , and calcium nitrate, Ca(NO ₃) ₂ , are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
C an D a D a U When san heated B ba an C m	n orange-red flame is seen. yellow flame is seen. (Total for Question 10 = 1 mark) nples of magnesium nitrate, Mg(NO ₃) ₂ , and calcium nitrate, Ca(NO ₃) ₂ , are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
 ☑ D a 1 When san heated ☑ A be an an	yellow flame is seen. (Total for Question 10 = 1 mark) nples of magnesium nitrate, Mg(NO ₃) ₂ , and calcium nitrate, Ca(NO ₃) ₂ , are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
1 When san heated	(Total for Question $10 = 1$ mark) nples of magnesium nitrate, Mg(NO ₃) ₂ , and calcium nitrate, Ca(NO ₃) ₂ , are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
heated A be B be an C m	nples of magnesium nitrate, $Mg(NO_3)_2$, and calcium nitrate, $Ca(NO_3)_2$, are oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
heated A be B be an C m	oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
heated A be B be an C m	oth compounds decompose to form the corresponding nitrite and oxygen. oth compounds decompose to form the corresponding oxide, nitrogen dioxide
B bo an	oth compounds decompose to form the corresponding oxide, nitrogen dioxide
an 🖸 🖸 🖾	
	ind oxygen.
Ca	nagnesium nitrate decomposes to form magnesium nitrite and oxygen whereas alcium nitrate decomposes to form calcium oxide, nitrogen dioxide and oxygen.
	nagnesium nitrate decomposes to form magnesium oxide, nitrogen dioxide and xygen whereas calcium nitrate decomposes to form calcium nitrite and oxygen.
	(Total for Question 11 = 1 mark)
increases	the following properties of the elements chlorine, bromine and iodine with increasing atomic number?
	Boiling temperature
	Bond enthalpy
	Clectronegativity
D F	irst ionization energy
	(Total for Question 12 = 1 mark)

13	Which	of the following is a secondary alcohol?
	🖾 A	butan-1-ol
	B	butan-2-ol
	C	2-methylpropan-1-ol
	D 🛛	2-methylpropan-2-ol
		(Total for Question 13 = 1 mark)
14	The co	ompound
		Cl
	has the	e systematic name
	🖾 A	2-chlorobutane
	B	3-chlorobutane
	C	1-chloro-1-methylpropane
	D 🖾	1-chloro-2-methylbutane
		(Total for Question 14 = 1 mark)
15	When	a chloroalkane is heated with aqueous sodium hydroxide
	🖾 A	no reaction occurs with primary, secondary or tertiary chloroalkanes.
	B	a reaction occurs with primary and secondary chloroalkanes but not with tertiary chloroalkanes.
	C	a reaction occurs with tertiary chloroalkanes but not with primary and secondary chloroalkanes.
	D 🛛	a reaction occurs with primary, secondary and tertiary chloroalkanes.
		(Total for Question 15 = 1 mark)
	Use tl	nis space for any rough working. Anything you write in this space will gain no credit.

	nitrogen dioxide, NO ₂ , exists in equilibrium with colourless gen tetroxide, N_2O_4 .
	$2NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H = -57.2 \text{ kJ mol}^{-1}$ brown colourless
	e pressure is increased. When equilibrium is restored, the appearance of the iture of gases will be (1)
A	colourless.
B	unchanged.
C	paler brown.
D	darker brown.
	e temperature is increased. When equilibrium is restored, the appearance of the ature of gases will be (1)
A	colourless.
B	unchanged.
C	paler brown.
D	darker brown.
	(Total for Question 16 = 2 marks)
	propanal, CH ₃ CH ₂ CHO, and propanone, CH ₃ COCH ₃ , are compared using al methods of analysis, which of the following is not correct?
physica	al methods of analysis, which of the following is not correct?
physica	al methods of analysis, which of the following is not correct? The carbonyl groups absorb at very similar frequencies of the IR spectrum. The compounds will have different patterns in the fingerprint region of the IR
physica	al methods of analysis, which of the following is not correct? The carbonyl groups absorb at very similar frequencies of the IR spectrum. The compounds will have different patterns in the fingerprint region of the IR spectrum.
physica	In methods of analysis, which of the following is not correct? The carbonyl groups absorb at very similar frequencies of the IR spectrum. The compounds will have different patterns in the fingerprint region of the IR spectrum. The compounds will form different fragmentation patterns in a mass spectrum. The compounds will have molecular ion peaks at different mass to charge ratios
physica	In methods of analysis, which of the following is not correct? The carbonyl groups absorb at very similar frequencies of the IR spectrum. The compounds will have different patterns in the fingerprint region of the IR spectrum. The compounds will form different fragmentation patterns in a mass spectrum. The compounds will have molecular ion peaks at different mass to charge ratios in a mass spectrum.

~	SECTION B	
the questions. W	Vrite your answers in the space	s provided.
of some hydrides	s are given below.	
Compound	Boiling temperature / K	
HF	293	
HC1	188	
HBr	206	
HI	238	
H ₂ O	373	
g the forces invol	ved, why HI has a higher boiling	g temperature (3)
g the types of for	ces involved, why HF has a high	ter boiling
	of some hydrides Compound HF HCl HBr HI H2O g the forces invol	HF293HCl188HBr206HI238H2O373

(c) Suggest why H_2O has a higher boiling temperature than HF.	(1)
(Total for Question 18 = 7 ma	rks)
	9 Turn over

(b) (i)	(b) (i) State the trend in the thermal stability of the metal carbonates as the group is descended.	
		(1)
*(ii)	Explain this trend in stability.	(3)
	(Total for Question 19 = 8 mar	·ks)
		11

20 Chlorine disinfectants are essentially solutions containing chlorine molecules and chlorate(I) ions in an equilibrium summarised by the equation

$$Cl_2(aq) + H_2O(l) \rightleftharpoons 2H^+(aq) + ClO^-(aq) + Cl^-(aq)$$
 Equation 1

The chlorine content of a disinfectant was determined using the following procedure.

- 1. 10.0 cm³ of the disinfectant was transferred to a 250 cm³ volumetric flask.
- 2. Approximately 20 cm³ of nitric acid and 20 cm³ potassium iodide solution (both in excess) were added to the volumetric flask.
- 3. The solution in the volumetric flask was made up to the mark with distilled water and then mixed thoroughly.
- 4. 10.0 cm³ portions of the solution in the volumetric flask were titrated against a solution of sodium thiosulfate, concentration 0.109 mol dm⁻³. Starch solution was added near the end-point of the titration and the mean (average) titre was 27.35 cm³.

The equations for the reactions involved in this procedure are

$Cl_2(aq) + 2I^-(aq) \rightarrow I_2(aq) + 2Cl^-(aq)$	Equation 2
$I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$	Equation 3

(a) (i) Calculate the number of moles of sodium thiosulfate used in the titration.

(2)

(ii) Calculate the number of moles of iodine, I_2 , that reacted in the titration (step 4).

(1)

(iii) Hence state the number of moles of chlorine, Cl_2 , in 10.0 cm³ of the solution in the volumetric flask.

(1)

(iv) Calculate the concentration of chlorine, in mol dm ⁻³ , in the original disinfectar	
	(2)
(b) Equation 1 is an example of a disproportionation reaction. Define the term 'disproportionation' and explain, by considering the relevant oxidation numbers, wh	ıy
this reaction is a disproportionation.	(3)
(c) State the colours of the titration solution just before the starch solution is added, after the starch solution is added and the colour change at the and point of the reaction	er
the starch solution is added and the colour change at the end-point of the reaction.	(2)
Colour just before adding the starch	
colour after adding the starch	
Colour at the end-point	
	wka)
(Total for Question 20 = 11 ma	IFKS)
	1

P 3 9 3 0 3 A 0 1 3 2 4

BLANK PAGE

P 3 9 3 0 3 A 0 1 6 2 4

(iii)	If C_4H_9I is used instead of C_4H_9Br in reaction D , the rate of formation of $C_4H_9NH_2$ increases. Explain why the rate of reaction increases.	(1)
	ogenoalkanes are widely used as refrigerants and belong to the class of igerants that cool by change of state (typically by boiling).	
(i)	Suggest how halogenoalkanes cool by change of state.	(1)
(ii)	Suggest two characteristics or properties desirable in a refrigerant.	
()		(2)
	(Total for Question 21 = 14	marks)
	TOTAL FOR SECTION B = 40 M	IARKS

P 3 9 3 0 3 A 0 1 7 2 4

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

Nitrogen monoxide is an unusual molecule both in its chemical structure (shown below) and in its impact on our lives.

Nitrogen monoxide is an important chemical messenger in all mammals and, at appropriate concentrations, it is vital to life; however, at high concentrations in the body, it is extremely toxic.

Nitrogen monoxide is considered a dangerous atmospheric pollutant; it is involved in the formation of a range of toxic substances, including ozone, at low altitudes, and in the depletion of the ozone layer at high altitudes.

Nitrogen monoxide is formed by the direct combination of nitrogen and oxygen at high temperatures, a reaction that occurs naturally in lightning discharges, and as a byproduct of the reactions in internal combustion and jet engines. Catalytic converters reduce nitrogen monoxide emissions from car engines by catalysing the reaction between nitrogen monoxide and carbon monoxide to form nitrogen and carbon dioxide.

The reactions of nitrogen monoxide which involve ozone in the atmosphere are summarised below.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

NO₂(g) $\xrightarrow{\text{UV radiation}}$ NO(g) + O(g) O₂(g) + O(g) \longrightarrow O₃(g)

 $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$

When the ratio of nitrogen dioxide to nitrogen monoxide is high (> 3), the rate of formation of ozone is faster than its rate of removal. When the ratio is low (< 0.3), the reverse is true.

Ozone causes breathing difficulties, headaches, fatigue and can aggravate respiratory problems. The reaction of nitrogen monoxide with hydrocarbons can also produce other toxic compounds, such as aldehydes.

(a) Write the equation for the formation of nitrogen monoxide from nitrogen and oxygen. State symbols are **not** required.

(1)

What name is given to a chemical species such as nitrogen monoxide that has an unpaired electron?	1								
	(1)								
Chemical species with unpaired electrons occur as intermediates in some chemical reactions. What type of bond breaking produces these species?	(1)								
Suggest the most likely source of the hydrocarbons that react with nitrogen monoxide to form toxic compounds.	(1)								
Suggest the type of reaction that is involved when a hydrocarbon is converted into an aldehyde.	(1)								
Draw the skeletal formula of the aldehyde with three carbon atoms.	(1)								
By considering the equation									
$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$									
explain the effect of the reaction of hydrocarbons with nitrogen monoxide on the									
	(1)								
	unpaired electron? Chemical species with unpaired electrons occur as intermediates in some chemical reactions. What type of bond breaking produces these species? Suggest the most likely source of the hydrocarbons that react with nitrogen monoxide to form toxic compounds. Suggest the type of reaction that is involved when a hydrocarbon is converted into an aldehyde. Draw the skeletal formula of the aldehyde with three carbon atoms. By considering the equation $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$								

(d) Suggest why the proportion of nitrogen dioxide might be reduced at high altitudes. (2) (e) Explain why it is important to maintain the concentration of ozone in the upper atmosphere. (2) (f) (i) Write an equation for the reaction on a catalytic converter described in the passage. State symbols are not required. (1)

P 3 9 3 0 3 A 0 2 0 2 4

(ii) Draw an energy profile for the exothermic reaction in (f)(i). Label the axes, the reactants and products, the enthalpy change and the activation energy. (3) *(iii) By referring to your energy profile, explain how a catalyst speeds up a chemical reaction. (3) (g) Jet aircraft are considered a greater threat to the ozone layer than road vehicles. Suggest an explanation for this. (2) (Total for Question 22 = 20 marks) **TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS**

BLANK PAGE

BLANK PAGE

	0 (8)	(18) 4.0 He	aelium 2	20.2	Ne	neon	39.9	Ar	argon 18	83.8	, Кг	krypton 36	131.3	Xe	xenon 54	[222]	Rn	radon 86								
I he Periodic Table of Elements	7 0		(17) he	19.0 2		Pe	<u> </u>	<u></u> כ				bromine kr 35	126.9 1		iodine x	[210]		astatine r 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated	175	Lu	lutetium 71	[257]	Lr awrencium	103
						-	+									-				iave beer ed	ŀ				nobelium law	
	9		(16)	16.0	0	oxygen	32.1		sultur 16	79.0	Se		127.6	Te		[209]		polonium 84		2-116 h enticat	173		ytt	[254]		
	2		(15)	14.0	z	nitrogen	31.0	م	phosphorus 15	74.9	As		121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	169	E T	thulium 69	[256]	Md	101
	4		(14)	12.0	U	carbon	28.1	Si	silicon 14	72.6	е Се	germanium 32	118.7	Sn	ti 20	207.2	P P	lead 82		atomic nu but not 1	167	Ц	erbium 68	[253]	F n	100
	m		(13)	10.8	8	boron	د 27.0	AI	aluminium 13	69.7		gallium 31	114.8	Ē	indium 49	204.4	F	thallium 81		ents with a	165	٩	holmium 67	[254]	ES inctainium	66
									(12)	65.4	Zn	zinc 30	112.4	bC	cadmium 48	200.6	Hg	mercury 80		Eleme	163	2	dysprosium 66	[251]	Cf Es	98
									(11)	63.5	C	copper 29	107.9	Ag	silver 47	197.0		gold 79	[272]	Rg roentgenium 111	159	qL	terbium d 65	_	BK berkelium	97 L
									(10)	58.7	ïŻ	nickel 28	106.4	РЧ	palladium 46	195.1	£	platinum 78		DS amstadtium rc 110	157		gadolinium 64		S	96
									(6)	58.9	ვ	cobalt 27	102.9	Rh	45	192.2	<u> </u>	iridium 77	[268]	Mt Ds meitnerium 109 110	152	Eu	europium g	[243]	Am	93 94 95
		1.0 H hydrogen	hydrogen 1						(8)	55.8	Fe	iron 26	101.1	Ru	ruthenium 44	190.2	õ	osmium 76	[277]	Hs hassium n 108	150	Sm	samarium 62	[242]	Pu Autonium	94
									(2)	54.9	Mn	manganese 25	[98]	Ч	technetium 1 43	186.2	Re	rhenium 75	[264]	Bh bohrium 107	[147]] E	promethium 61	[237]	Np	93
				relative atomic mass	atomic symbol	mher			(9)	52.0	ა	Ę	95.9	Wo	molybdenum t 42	183.8		tungsten 74	[366]	Sg seaborgium 106	144	PN	eodymium p 60		U Irranium I	92
			Key			name atomic (proton) number			(2)	50.9	>	vanadium 6 23	92.9		niobium n 41	180.9		tantalum 73		dubnium s 105	141		praseodymium r 59	[231]	Pa	
				relativ					(4)	47.9	ï۲	titanium	91.2	Zr	zirconium 40	178.5		hafnium 72	[261]	Rf rutherfordium 104	140	Ce C	cerium p 58	232	Th thorium	
									(3)	45.0		scandium 21	88.9	≻	yttrium z 39	138.9		lanthanum 57	[227]	Ac* actinium n 89						
	2		(2)	9.0	Be	beryllium	4 24.3	Mg	nagnesium 12	40.1	Ca		87.6	Sr	strontium 38	137.3		barium la 56	[226]	Ra radium 88		* Lanthanide series	e series			
	-		(1)	6.9		lithium b	23.0		sodium m 11	-		potassium 6 19	85.5	Rb	rubidium st 37			caesium 55	[223]	Fr francium 87		* Lanthar	* Actinide series			
						-				<u> </u>		ă	<u> </u>		L			5	L	Ţ	I					

The Periodic Table of Elements

