OC	R
Oxford Cambridge a	nd RSA

...day June 20XX – Morning/Afternoon

A Level Further Mathematics B (MEI)

Y432 Statistics Minor

SAMPLE MARK SCHEME

Duration: 1 hour 15 minutes

MAXIMUM MARK 60

This document consists of 12 pages

Text Instructions

1. Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Meaning
mark scheme	
E1	Mark for explaining a result or establishing a given result
E1 dep*	Mark for explaining a result or establishing a given result Mark dependent on a previous mark, indicated by *
dep*	Mark dependent on a previous mark, indicated by *
dep* cao	Mark dependent on a previous mark, indicated by * Correct answer only
dep* cao oe	Mark dependent on a previous mark, indicated by * Correct answer only Or equivalent
dep* cao oe rot	Mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated
dep* cao oe rot soi	Mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied
dep* cao oe rot soi www	Mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working
dep* cao oe rot soi www AG	Mark dependent on a previous mark, indicated by * Correct answer only Or equivalent Rounded or truncated Seen or implied Without wrong working Answer given

2. Subject-specific Marking Instructions for A Level Further Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Ε

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

Mark Scheme

- The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
 Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through guestions candidate-by-candidate rather than guestion-by-guestion.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some papers. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.
- k Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned on this occasion, but shows what a complete solution might look like

	(i)		$0.95^9 \times 0.05$	M1		
1 (IVII	3.3	
1 (= 0.0315	A1	1.1	
1 ([2]		
	(ii)		$0.95^{10} = 0.599$	B1	1.1	
				[1]		
1 ((iii)		1	B1	1.1	
			$\frac{1}{0.05} = 20$			
			0.05	[1]		
2 ((i)	(A)	The distribution is symmetrical so E(X) is at the centre i.e.	B1	2.4	Or use of
-	(1)	(1)	2	D 1		$0 \times 0.05 + 1 \times 0.2 + 2 \times 0.5$
			-			
						$+3 \times 0.2 + 4 \times 0.05$
				[1]		13/(0.21) 1/(0.03)
2 ((i)	(B)	$E(X^{2}) = (0^{2} \times 0.05) + (1^{2} \times 0.2) + (2^{2} \times 0.5) + (3^{2} \times 0.2) +$	 M1	1.1	For $\Sigma r^2 p$ (at least 3 terms
-	(1)	(D)	$(4^2 \times 0.05) + (1^2 \times 0.2) + (2^2 \times 0.5) + (5^2 \times 0.2) + (4^2 \times 0.05) + (5^2 \times 0.2) $			correct)
			= 4.8			
			$Var(X) = 4.8 - 2^2$	M1	1.2	dep for – their $E(X)^2$
			= 0.8	A1FT	1.1	FT their E(X) provided Var(X)
						>0
				[3]		
2 ((ii)		$E(Y) = 250 \times 2 - 80 = 420$	B1FT	1.1	FT their E(X)
	` '		$Var(Y) = 250^2 \times 0.8 = 50000$	B1FT	1.1	FT their Var(X)
				[2]		
2 ((iii)		Testing all of them not suitable as they will not be	<u>E1</u>	2.4	OR It would take too long
	、 <i>)</i>		available to sell to customers.			
				[1]		
2 ((iv)		Random sample avoids unsuspected sources of bias.	E1	1.2	OR allows inference
-	()		The sumple avoids unsuspected sources of onds.	[1]		

Y432

(Questio	on	Answer	Marks	AOs	Guidance
3	(i)		E(X) = 5	B1	1.1	
			$Var(X) = \frac{10 \times 12}{12}$	M1	3.3	
			$Val(X) = \frac{12}{12}$	A1	1.1	
			=10	[3]		
3	(ii)		For 2 visits mean = 10	B1FT	1.1	FT their (i)
			Variance $= 10 + 10 = 20$	M1	3.4	
				A1	1.1	
				[3]		
3	(iii)		[Working leading to] 121 possibilities	M1	3.1b	E.g. starting list (0, 10), (0, 9)
						or as sample space or
						calculation 11×11 . Implied
						by probability out of 121
			Most likely total is 10.	A1	1.1	
			E.g. This is the one on the main diagonal of the sample	E1	2.4	Justification
			space so occurs most often.			
			D. L. L.W. 11	B1FT	3.2a	FT correct probability for their
			Probability = $\frac{11}{121}$ oe			most likely total
				[4]		

(Questic	on	Answer	Marks	AOs	Guidance
4	(i)		Receipt of an email is an event which occurs randomly,	E1	3.3	
			independently			
			and at a uniform average rate.	E1	3.3	Allow constant average rate
				[2]		
4	(ii)	(A)	Poisson mean 7.4	B1	1.1	BC
			P(X=10) = 0.0829			
				[1]		
4	(ii)	(B)	$P(X \ge 10) = 1 - 0.7877$	M1	3.4	$OR P(X \ge 10) = 1 - P(X \le 9)$
			= 0.2123.	A1	1.1	BC
				[2]		
4	(iii)	(A)	Numbers of junk emails arriving during working hours	E1	3.5b	E.g. sum of independent
			and outside working hours are independent.			Poisson distributions is
						Poisson
				[1]		
4	(iii)	(B)	$Mean = 7.4 + 16 \times 0.3 = 12.2$	B1	3.3	
			$P(X \le 20) = 0.9863$	B1	1.1	BC
				[2]		

(Question	Answer	Marks	AOs	Guida	nce
5	(i)	Spearman's correlation coefficient will become more negative as there is a stronger tendency for score to go down as age goes up.	E1 [1]	2.4	oe	Saying it is closer to a straight line does not get the mark.
5	(ii)	Contestant A B C D E F	M1	1.1	For ranking Age	can be reversed as long as
		Age rank 6 5 4 3 1 2 Score rank 2 1 3 5 4 6	M1	1.1	For ranking Score	consistent can be reversed as long as consistent
		$r_s = -0.7714 (4 \text{ s.f.})$	A1 [3]	1.1	BC	
5	(iii)	H ₀ : there is no association between age and score.	B1	3.3	B1 for H ₀	
		H ₁ : there is an association between age and score.	B1	2.5	B1 for H ₁ and population soi NB H ₀ H ₁ <u>not</u> in terms of ρ	hypotheses as shown in the answer column should be understood to imply population
		For $n = 6$ 5% critical value is 0.8857	B1	3.4	B1 for ± 0.8857	
		Since 0.7714< 0.8857	M1	1.1	M1 for comparison with critical value, provided $ \mathbf{r}_{s} < 1$	
		Do not reject the null hypothesis There is insufficient evidence to suggest at the 5% level that there is association between age and score.	A1FT [5]	2.2b	A1 for conclusion in words FT their r_s and sensible critical value	
5	(iv)	Cannot tell if it is bivariate Normal	E1 [1]	3.5b	E.g. score must be an integer	

	Question	Answer	Marks	AOs	Guidance	
6	(i)	Standard deviation = 1.90546	M1	1.1	BC	SC1 for square of other "standard deviation" to get 3.54
		Sample variance = 3.63	A1 [2]	1.1		
6	(ii)	Mean not too far from variance so Poisson may be suitable	E1 [1]	2.2b	Not "Poisson is good fit" (must be non-assertive).	
6	(iii)	H ₀ : Poisson model is a good fit H ₁ : Poisson model is not a good fit	B1 [1]	2.5	Ignore any reference to the value of the Poisson parameter	
6	(iv)	Cell C3 = 0.1929 Cell D3 = 7.7159 Cell E6 = $\frac{(4-5.0544)^2}{5.0544}$	B1 B1FT M1	3.4 2.2a 1.1a	40 times their C3	
		=0.2200	A1 [4]	1.1		
6	(v)	$X^{2} = 2.292$ Refer to X ₄ ² Critical value at 10% level = 7.779	B1 M1 A1	1.1 3.4 1.1	Degrees of freedom = 4 soi	
		2.292 < 7.779 Do not reject H ₀ There is insufficient evidence to suggest that the Poisson	M1	1.1	Comparison with critical value	last two marks allowed if 5 degrees of freedom used
		model is not a good fit.	A1 [5]	2.2b	Conclusion	

(Question	Answer	Marks	AOs	Guidance	e
6	(vi)	$\frac{e^{-\lambda}\lambda}{1} = 0.25716$ and $\frac{e^{-\lambda}\lambda^2}{2} = 0.27002$	M1	3.1b	OR $\frac{e^{-\lambda}\lambda^2}{2} = 0.27002$ and	
					$\frac{\mathrm{e}^{-\lambda}\lambda^3}{3!} = 0.18901$	
		$\frac{\lambda}{2} = \frac{0.27002}{0.25716}$	M1	2.2a	OR $\frac{\lambda}{3} = \frac{0.18901}{0.27002}$	
		$\lambda = 2.1$	A1	1.1		
			[3]			
7		Let X be the number of heads on the 100 tosses	M1	3.3		
		[X ~ Bin (100, 0.5)]				
		Y = X - (100 - X) = 2X - 100	M1	3.1b		
		Var(Y) = 4 Var(X)	M1	1.1		
		$Var (X) = npq \text{ so } Var(Y) = 4 \times 100 \times 0.5 \times 0.5$	E1	2.1		
		= 100 AG				
			[4]			