

GCE

Chemistry A

Unit F321: Atoms, Bonds and Groups

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
<u> </u>	Omission mark
RE	Rounding error
SF	Error in number of significant figures
 Image: A set of the set of the	Correct response

Abbreviations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

The following questions should be annotated with ticks \checkmark , crosses imes, ignore imes, etc to show where marks have been awarded in the body of the text

2bi 2c 3d

G	Question		Answer				Mark	Guidance
1	(a)		particle	relative mass	relative charge	position within the atom	2	For relative masses ALLOW 1/1800 to 1/2000 for electron value (0.0005–0.00056) ALLOW 'negligible' for electron value
			proton	1	+ 1	nucleus		IGNORE '+' in front of correct values DO NOT ALLOW '-' in front of 1/2000
			neutron	1	nil/0	nucleus		DO NOT ALLOW – In front of 1/2000 DO NOT ALLOW (nil' OR 'zero' for mass of electron
			electron	1/2000	- 1	shell		For relative charges
			Relative mass c Relative charge		n columns √			ALLOW 1+ and 'neutral' and 1– IGNORE '' (ie a dash) for neutron DO NOT ALLOW '+' or '' without '1' DO NOT ALLOW '1' without charge For position within the atom IGNORE 'middle OR 'centre' for 'nucleus'
1	(b)	(i)	s-orbital = spher AND p-orbital = dumb		/		1	For s-orbital IGNORE 'circular' For p-orbital ALLOW other words indicating 3-D shape of p-orbital eg 'Peanut-shaped' OR hour glass etc ALLOW 'figure of eight' OR 'figure of 8' IGNORE diagrams
1		(ii)	p-orbitals have ((three) p-orbitals	0	-	tals √	2	ALLOW reverse argument ALLOW suitable energy diagram for either part

G	Question	Answer	Mark	Guidance
1	(c)	X N X N .	1	ALLOW all dots or all crosses.
1	(d)	First check the answer line. If answer = $1.7(0) \times 10^{-3}$ award 2 marks. M1 (Dividing by 6.02×10^{23}) Number of N ₂ molecules = $5.117 \times 10^{20} = 8.5. \times 10^{-4}$ 6.02×10^{23} OR 0.85×10^{-3} OR 0.085×10^{-2} OR 0.0085×10^{-1} OR $0.00085 \checkmark$ M2 (Correct conversion of molecules to atoms + standard form) M1 x 2 and in standard form \checkmark From 0.0085 , answer = $2 \times 0.00085 = 0.00170$ = $1.7(0) \times 10^{-3}$ Alternative method M1 (Correct conversion of molecules to atoms) = $5.117 \times 10^{20} \times 2 = 1.02(34) \times 10^{21}$ OR $10.2(34) \times 10^{20}$ OR $102.(34) \times 10^{19}$ etc M2 (Correct use of 6.02×10^{23} + standard form) $1.02(34) \times 10^{21} = 1.7(0) \times 10^{-3}$	2	ALLOW one mark for 0.17×10^{-2} OR 0.017 $\times 10^{-1}$ OR 0.0017 (not standard form) ALLOW one mark for 4.25 $\times 10^{-4}$ (dividing by 2 in M2 + standard form) ALLOW one mark for 6.16 $\times 10^{44}$ (multiplying by 6.02 $\times 10^{23}$ in M1 + standard form)

Q	uesti	on	Answer	Mark	Guidance
1	(e)	(i)	$N_2O_3 = +3$ NO = +2 NO ₂ = +4 \checkmark	1	ALLOW '3' OR '3+' etc ALLOW oxidation numbers written over the equation but IGNORE if oxidation numbers are given on the answer lines
		(ii)	Disproportionation ✓	1	QWC 'disproportionation' spelled correctly.
1	(f)	(i)	(Actual) number of atoms of each element present in a molecule ✓	1	ALLOW 'compound' for 'molecule' IGNORE 'simplest whole' before 'number' ALLOW 'actual ratio' IGNORE 'ratio' alone DO NOT ALLOW 'simplest ratio'
		(ii)	HNO₂ ✓	1	ALLOW O ₂ HN etc
			Total	12	

Q	uesti	on	Answer	Mark	Guidance
2	(a)		Simple molecular lattice ✓	1	ALLOW 'simple covalent' OR 'simple molecular' ie 'simple' must be seen. DO NOT ALLOW 'simple covalent <i>bonds</i> '
2	(b)	(i)	 M1 Creating the dipole mark Uneven distribution of electrons ✓ M2 Type of dipole mark This creates/causes an instantaneous dipole OR temporary dipole ✓ 	3	IGNORE use of 'atoms' for M1 and M2ALLOW (random) movement of electronsALLOW change in electron densityALLOW alternative expression for instantaneous dipoleEg transient dipole, oscillating dipole, momentary dipole, changing dipole
					DO NOT ALLOW the induction of an instantaneous or temporary dipole for M2 DO NOT ALLOW the idea of a permanent dipole OR formation of ions for M2
			M3 Induction of a second dipole mark This causes an induced dipole on a neighbouring/adjacent molecule(s)/halogens √		ALLOW resultant dipole on an adjacent molecule(s) IGNORE atoms for molecules IGNORE instantaneous/temporary for M3
		(ii)	M1 <i>Electron mar</i> k Bromine has more electrons (than chlorine) ✓ M2 <i>Relative force mark</i> Bromine has stronger (OR more) van der Waals' forces (between molecules) OR More energy is needed to break the van der Waals' forces in bromine ✓	2	ALLOW reverse argument throughout ALLOW chlorine has less electron shells IGNORE less shells IGNORE reference to chlorine has less shielding for M1 ALLOW vdW ALLOW 'intermolecular forces' OR 'dispersion forces' OR 'London Forces' OR induced dipole-dipole forces' for van der Waals' forces ALLOW 'less' for 'weaker' DO NOT ALLOW implication that any other attraction is broken for M2 eg Covalent bonds

2 (c) 5 For M1 and M2 ALLOW any halide for the named halides in the question eg potassium chloride' for barium chloride 'potasium bromide' DO NOT ALLOW 'barium chloride 'potassium bromide' M1 Mixing of first pair of solutions Adding (aqueous) barium chloride to bromine (water) OR BaCl₂ + Br₂ 5 For M1 and M2 M2 Mixing of second pair of solutions Adding (aqueous) calcium iodide to bromine (water) OR Cal₂ + Br₂ M2 could be awarded from a correct ionic equation in M4 M2 can be seen anywhere M2 Adding aqueous) calcium iodide to bromine (water) OR Cal₂ + Br₂ M2 could be awarded from a correct ionic equation in M4 M2 can be seen anywhere M3 colours in cyclohexane Colour for M1 is orange OR yellow AND M3 colours in cyclohexane Colour for M1 is orange OR yellow AND M4 lonic equation mark Br₂ + 2l ⁻ → l₂ + 2Br ⁻ M4 lonic equation mark Br₂ + 2l ⁻ → l₂ + 2Br ⁻ M5 Use of M1 and one of M2 as only two experiments IGNORE late symbols IGNORE late symbols IGNORE late symbols M5 Use of M1 and one of M2 as only two experiments IGNORE late Symbols IGNORE late Symbols	Question	Answer	Mark	Guidance
bottom right hand side of the answer space		M1 <i>Mixing of first pair of solutions</i> Adding (aqueous) barium chloride to bromine (water) OR BaCl ₂ + Br ₂ M2 <i>Mixing of second pair of solutions</i> Adding (aqueous) calcium iodide to bromine (water) OR Cal ₂ + Br ₂ OR Adding aqueous magnesium bromide to aqueous iodine OR MgBr ₂ + l ₂ <i>M3 Colours in cyclohexane</i> Colour for M1 is orange OR yellow AND Colour for M2 is purple OR violet OR mauve OR pink OR lilac <i>M4 lonic equation mark</i> Br ₂ + 2l ⁻ > l ₂ + 2Br ⁻		For M1 and M2 ALLOW any halide for the named halides in the question eg 'potassium chloride' for barium chlorine/BaCl' 'calcium iodine/Cal' 'magnesium bromine/MgBr' as the halide DO NOT ALLOW 'bromide' for 'bromine' OR 'iodide' for 'iodine' M1 can be seen anywhere M2 could be awarded from a correct ionic equation in M4 M2 can be seen anywhere If both M2 tests and M1 are given, this will nullify M5 M3 is given for the correct resultant colour of pairs of solution given in M1 and M2. If both possible pairs of solutions in M2 are given, both colours must be correct. IGNORE colours of other combinations of solutions IGNORE colours in the aqueous layer if stated DO NOT ALLOW other colours for M1 and M2 (eg iodine is brown) M4 can be awarded anywhere M4 also scores M2 if not already awarded ALLOW multiples IGNORE state symbols IGNORE Br ₂ + 2Cl ⁻ > Br ₂ + 2Cl ⁻ DO NOT ALLOW other ionic equations DO NOT ALLOW if more than two experiment are attempted even if pointless eg 'barium chloride + calcium iodide'
Total 11				bottom right hand side of the answer space

C	uestion	Answer	Mark	Guidance
3	(a)	Periodicity ✓	1	
3	(b)	Sodium OR Na ✓ Silicon OR Si ✓ Neon OR Ne ✓	3	
3	(c)	Ga ³⁺ √	1	
3	(d)	M1 Number of bonding electrons mark Magnesium has more outer OR bonding electrons √	3	ALLOW reverse argument throughout ALLOW 'more delocalised electrons' for 'more outer electrons' DO NOT ALLOW 'Magnesium molecules' for M1
		<i>M2 Ionic charge mark</i> Magnesium ions have a greater (positive) charge (density) ✓		ALLOW Mg ²⁺ ion OR Mg ion for 'magnesium ion' ALLOW Mg ²⁺ and Na ⁺ for M2 (may be seen in a diagram) IGNORE magnesium has a greater charge but ALLOW magnesium has a greater ionic charge IGNORE nuclear charge DO NOT ALLOW 'atoms' or 'molecules' having a greater charge for M2
		M3 Attraction mark Magnesium has a greater attraction between ions and delocalised electrons ✓		 ALLOW 'stronger metallic bonds' only when a clear description of metallic bonding is given. Eg 'The attraction of positive (metal) ions to delocalised electrons' QWC 'delocalised/delocalized' spelled correctly at least once in context of M3 (may be seen in M1 but used in M3) 'delocalised' need not be directly next to electrons eg Mg has more delocalised electrons and the ions have a greater attraction to these electrons would secure M3

G	Questi	ion	Answer	Mark	Guidance
3	(e)		First check the answer line. If answer = 1200 cm ³ award 3 marks. Mol of Mg(NO ₃) ₂ = $\frac{2.966}{148.3}$ = 2(.00) x 10 ⁻² OR 0.02(00) mol \checkmark Mol of gas = 2(.00) x 10 ⁻² x 5/2 = 5(.00) x 10 ⁻² OR 0.05(00) mol \checkmark	3	If answer = 960 cm ³ award 2 marks. If answer = 240 cm ³ award 2 marks. ALLOW ECF for answers to at least two significant figures up to calculator value, correctly rounded ALLOW separate numbers of mol of each gas for M2 (0.04(00) mol NO ₂ and 0.0100 mol O ₂)
			Vol of Gas = $0.05 \times 24\ 000 = 1200\ \text{cm}^3 \checkmark$		ALLOW a second mark if only volume of O_2 (240 cm ³) OR only volume of NO_2 (960 cm ³) is calculated
3	(f)	(i)	SF ₆ AND Sulfur(VI) fluoride OR Sulfur hexafluoride ✓	1	IGNORE sulfur fluoride
		(ii)	$2F_2 + 2NaOH \rightarrow F_2O + 2NaF + H_2O$ M1 F ₂ O AND NaF ✓ M2 Rest of equation (including balance) ✓	2	ALLOW multiples IGNORE state symbol ALLOW OF_2 for F_2O AND FNa for NaF ALLOW both marks for alternative equations which have both F_2O and NaF AND three products Eg $3F_2$ + 2NaOH \rightarrow 2F ₂ O + 2NaF + H ₂ Eg 2F ₂ + NaOH \rightarrow F ₂ O + NaF + HF
3	(g)	(i)	δ– on each F AND δ+ on O $✓$	1	ALLOW δ2+ OR δ+ δ+ on O
		(ii)	Shape: non-linear AND Bond angle: 104.5° ✓	1	For shape ALLOW alternative words eg 'V-shaped' 'bent' 'angular'. In the absence of words allow a diagram with a non-linear shape $F - O - F$ bond angle > 90°. For bond angle ALLOW 106> bond angle ≥102 (Actual = 102°)
		(iii)	+2 ✓	1	ALLOW 2+
			Total	17	

Q	uesti	on	Answer	Mark	Guidance
4	(a)		$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 \checkmark$	1	ALLOW 4s ² 3d ¹⁰
4	(b)	(i)	M1 The (weighted) mean mass of an atom (of an element) ✓	3	ALLOW 'average' for 'mean' ALLOW 'mean mass of isotopes' but DO NOT ALLOW 'mean mass of isotope' (singular) DO NOT ALLOW 'mean mass of an element'
			M2 Compared with 1/12 th (the mass) ✓		For M2 and M3 ALLOW compared with the mass of carbon-12 which is 12
			M3 Of (one atom of) carbon-12 ✓		ALLOW for three marks Mass of one mole of atoms Compared to 1/12 th (mass of) one mole OR 12 g of carbon-12
					ALLOW for three marks <u>Mass of one mole of atoms</u> 1/12 th (mass of) one mole OR 12 g of carbon-12
4	(b)	(ii)	First check the answer line. If answer = 65.44 award 2 marks. $\frac{(64 \times 49.0) + (66 \times 27.9) + (67 \times 4.3) + (68 \times 18.8)}{100}$ OR 31.36(0) + 18.414 + 2.881 + 12.784 OR $65.439 \checkmark$	2	ALLOW one mark for ECF from transcription error in the first sum provided the final answer is to two decimal places and is between 64 and 68 and is a correct calculation of the transcription
4	(c)	(i)	 = 65.44 ✓ Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR zinc carbonate would dissolve OR disappear ✓ 	1	ALLOW 'carbon dioxide produced' DO NOT ALLOW incorrectly named gas eg H ₂

Q	uesti	on	Answer	Mark	Guidance
4	(c)	(ii)	$ZnCO_3 + 2HCI \rightarrow ZnCI_2 + CO_2 + H_2O \checkmark$	1	ALLOW multiples IGNORE state symbols
4	(d)	(i)	 Magnesium (atoms) has been oxidised AND Because it has lost two electrons ✓ Copper (ions) has been reduced AND Because it has gained two electrons ✓ 	2	 IGNORE use of oxidation numbers if electron gain/loss is mentioned. Electrons gain/loss could be in half equations In the absence of text look for evidence on the equation ALLOW 'donated' for 'lost' Assume 'Cu' refers to copper in 'CuSO₄' ALLOW one mark two electrons gained and lost for each species but oxidation/reduction is incorrect or is omitted ALLOW one mark for correct oxidation and reduction if electron transfer is omitted and correct changes of oxidation state are shown (ie Mg 0> (+)2 AND Cu (+)2 to 0) ALLOW 'two electrons transferred from magnesium to
4	(d)	(ii)	Mg(s) + 2H ₂ O(l) → Mg(OH) ₂ (aq) + H ₂ (g) Correct reactants and products \checkmark Balance and state symbols \checkmark	2	copper' ALLOW multiples ALLOW Mg(OH) ₂ (s) ALLOW Mg(s) + H ₂ O(g) OR H ₂ O(l)> MgO(s) + H ₂ (g) including state symbols for one mark

Q	Question		Answer	Mark	Guidance
4	(e)		First check the answer line. If answer = 0.120 award 4 marks. M1 Mol of $H_2SO_4 = 3.00 \times 10^{-2} \times \frac{35.0}{1000} = 1.05 \times 10^{-3} \text{ mol } \checkmark$	4	ALLOW ECF ALLOW 0.00105 mol
			M2 Mol of Al ₂ (SO ₄) ₃ = $\frac{1.05 \times 10^{-3}}{3}$ = 3.5(0) x 10 ⁻⁴ mol \checkmark		ALLOW 0.00035(0) mol
			M3 = 342.3 ✓		ALLOW 342
			M4 Mass $AI_2(SO_4)_3 = 3.5(0) \times 10^{-4} \times 342.3$ and = 0.120 g \checkmark Answer must be 3 sf		DO NOT ALLOW 0.12
4	(f)	(i)	Ca(OH)₂ OR Calcium hydroxide OR CaO OR Calcium oxide ✓	1	ALLOW Calcium carbonate OR CaCO ₃
4	(f)	(ii)	6Ca + P ₄ → 2Ca ₃ P ₂ √	1	ALLOW multiples IGNORE state symbols

Question	Answer	Mark	Guidance
(iii)	$3x \begin{bmatrix} xx \\ x \\ x \\ xx \end{bmatrix}^{2^{+}} 2x \begin{bmatrix} \bullet \bullet \bullet \\ \bullet \\ \bullet \\ \bullet \\ x \end{bmatrix}^{3^{-}}$ Ca with 8 (or no) electrons AND phosphide ion with dot- and-cross outermost octet \checkmark Three Ca ions AND two phosphide ions with correct charges \checkmark	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and
			charges are correct but only one of each ion is drawn. ALLOW (brackets not required) $3[Ca^{2+}] \ 3[Ca]^{2+} \ [Ca^{2+}]_3$ $2[P^3-] \ 2[P]^{3-} \ [P^{3-}]_2$ DO NOT ALLOW $[Ca_3]^{2+} \ [3Ca]^{2+} \ [Ca]_3^{2+}$ $[P_2]^{3-} \ [2P]^{3-} \ [P]_2^{3-}$
	Total	20	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

