

General Certificate of Education

Mathematics 6360 Statistics 6380

MS/SS1B Statistics 1B

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation

√or ft or F	follow through from previous incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
−x EE	deduct x marks for each error	G	graph
NMS	no method shown	c	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS/SS1B

Q	Solution	Marks	Total	Comments
1 (a)	Mean = $\frac{\sum fx}{\sum x}$ = $\frac{247}{52}$ = 4.75 or 43/4	B2		$\frac{247}{52} \Rightarrow B1$ CAO (4.75 = 5 \Rightarrow ISW) $4\frac{39}{52} \Rightarrow B2$
	If B0 but evidence of $\frac{\sum fx}{52}$	(M1)		
	Median $(26, 26\frac{1}{2}) = 5$	B2		CAO
	If B0 but evidence of cumulative	(B1)		Stated identification of 26 or 26½
	frequencies F: (0) 1 3 12 25 32 45 51 52 or	(M1)		Need to see attempt at ≥ 4 <i>F</i> -values
	If data assumed continuous so use of $4 + \frac{x}{7}$ where $0 < x < 2$			(4 < median < 4.29)
	Mode(s) = 4 and 6	B1	5	CAO both (so mode = $5 \Rightarrow B0$)
(b)	Mode(s)	B1		CAO
	More than one mode/value Two modes/values No unique mode/value	B1dep		Or equivalent; eg not unique
	No unique mode/value Notes:			Dep only on previous B1 scored
	If data treated as two separate sets, then only marks available are B1 B1dep in (b) If averages confused then mark (a) as stated			Modes = 1 and $13 \Rightarrow B0$ in (a) but B1 B1dep available in (b)
	eg median = 4 and $6 \Rightarrow B0$ in (a) and in (b) "median, as two values" $\Rightarrow B0$ B0		2	
	in (o) median, as two values \rightarrow B0 B0	Total	7	

or Att Att (ii)	attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$	B3 (B2) (B1) (M1)		AWFW AWFW 118.8 1619.36 31.5 114.43 & 416.13 (all 5 attempted) 51.2 4.18 & 0.33 (all 3 attempted)
or Att Att (ii)	$r=-0.1$ to 0.1 OR Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$ In the second of $\sum xy$ Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$ Attempt at $\sum x \sum xy$ Attempt at correct formula for x	(B1) (M1)		AWFW 118.8 1619.36 31.5 114.43 & 416.13 (all 5 attempted) 51.2 4.18 & 0.33
or Att Att (ii)	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$ The extrempt at S_{xx} S_{yy} & S_{xy} Attempt at correct formula for r	(M1)		118.8 1619.36 31.5 114.43 & 416.13 (all 5 attempted) 51.2 4.18 & 0.33
or Att Att (ii)	Attempt at $\sum x \sum x^2 \sum y \sum y^2$ & $\sum xy$ The extrempt at S_{xx} S_{yy} & S_{xy} Attempt at correct formula for r	, ,		(all 5 attempted) 51.2 4.18 & 0.33
or Att Att (ii)	$\sum xy$ Attempt at S_{xx} S_{yy} & S_{xy} Attempt at correct formula for r	, ,		(all 5 attempted) 51.2 4.18 & 0.33
Att (ii) (Al	attempt at S_{xx} S_{yy} & S_{xy}	, ,		51.2 4.18 & 0.33
Att (ii) (Al	Attempt at S_{xx} S_{yy} & S_{xy} Attempt at correct formula for r	, ,		
(ii) Att	attempt at correct formula for r	(m1)		
(ii) (Al		(m1)		(all 5 attempted)
(Al	r = 0.022 to 0.023	` '		
(Al	. 0.022 10 0.025	(A1)	3	AWFW
	Almost/virtually) no/zero (linear) orrelation (relationship/association/link)	B1		Or equivalent qualification of NO strength; do not follow-through from (i) B0 for very weak/weak/some/ little/slight/positive/hardly any/etc unless correct qualification also stated
bet	etween			correct quarricution also stated
	ength and (maximum) diameter of arrots	B1	2	Context; providing $-1 < r < 1$
(b) Un	Inlikely/wrong/incorrect/invalid	B1		Or equivalent
Wo	Vould expect a positive value			
or	^ -			
	Would expect weight to increase with ength	B1		Or equivalent reason
or			_	
Wo	Yould imply shorter carrots are heavier	Total	7	

MS/SS1B (co				
Q	Solution State of the State of	Marks	Total	Comments
3 (a)(i)	$X \sim N(5.08, 0.05^2)$ $P(X < 5) = P\left(Z < \frac{5 - 5.08}{0.05}\right) = P(Z < -1.6)$	M1		Standardising (4.5, 4.95, 5, 5.05 or 5.5) with 5.08 and $(\sqrt{0.05}, 0.05 \text{ or } 0.05^2)$ and/or $(5.08 - x)$
	= 1 - P(Z < 1.6) = 1 - 0.9452	m1		Area change; may be implied
(::)	= 0.0545 to 0.055	A1	3	AWFW (0.0548) $(1 - answer) \Rightarrow M1 \text{ max}$
(ii)	P(5 < X < 5.10) = P(X < 5.10) - (i)	M1		Or equivalent; must be clear correct method if answer incorrect and answer > 0
	= P(Z < 0.4) - (i) = 0.65542 - 0.0548			
	= 0.6 to 0.601	A1	2	AWFW (0.60062)
(b)(i)	Variance of $\overline{X}_4 = 0.05^2/4 = 0.000625$ SD of $\overline{X}_4 = 0.05/2 = 0.025$	В1		CAO; stated or used
	$P(\overline{X}_4 > 5.05) = P(Z > \frac{5.05 - 5.08}{0.025})$	M1		Standardising 5.05 with 5.08 and 0.025; allow (5.08 – 5.05)
	= P(Z > -1.2) = P(Z < 1.2)	m1		Area change; may be implied
	= 0.884 to 0.886	A1	4	$\begin{array}{c} \text{AWFW} & (0.88493) \\ (1 - \text{answer}) \Rightarrow \text{B1 M1 max} \end{array}$
(ii)	Zero	B1	1	CAO; or equivalent (ignore any working)
(c)	1% (0.01) $\Rightarrow z = -2.33$ to -2.32	B1		AWFW; ignore sign (-2.3263)
	$z = \frac{5 - \mu}{0.05}$	M1		Standardising 5 with μ and 0.05 or 0.025; allow $(\mu - 5)$
	= -2.3263	A1		Only allow: ± 2.05 to ± 2.06 ± 2.32 to ± 2.33 ± 2.57 to ± 2.58
	$\mu = 5.11$ to 5.12	A1		AWFW (5.1163)
	Note: $\frac{5-\mu}{0.05} = 2.3263 \implies 5.116$			Or equivalent inconsistent signs
	\Rightarrow B1 M1 A1 A0		4	
		Total	14	
		1 Utai	17	

Q	Solution	Marks	Total	Comments
4	$P(C) = 0.6 P(C \cap B) = 0.25$			In (a), ratios (eg 4:10) are only
	$(\mathbf{D}(C_1, \mathbf{r}, \mathbf{l}_2), 0.25, \mathbf{D}(\mathbf{D}_1, \mathbf{r}, \mathbf{l}_2), 0.4)$			penalised by 1 mark
	$\{P(C \text{ only}) = 0.35 P(B \text{ only}) = 0.4\}$			at first correct answer
(a) (i)	P(C') = 1 - P(C) = 1 - 0.6 = 0.4	B1	1	CAO; or equivalent
(ii)	$P(C \cap B') = 0.6 - 0.25$ = 1 - (0.4 + 0.25)	M1		Can be implied by correct answer
	= 1 - (0.4 + 0.23) $= 0.35$	A1	2	CAO; or equivalent
(iii)	P(B) = (i) + p with $p < 0.6$	M1		Can be implied by correct answer
	= (i) + 0.25	A 1		Can be implied by correct answer
	= 0.65	A1		CAO; or equivalent
	$ \mathbf{OR} \\ \mathbf{P}(B) = 1 - (ii) $	(M2)		Can be implied by correct answer
	= 0.65	(M2) $(A1)$		Can be implied by correct answer
	OR	(111)		
	$1 = P(C) + P(B) - P(C \cap B)$	(M1)		Can be implied by correct answer
	Thus $P(B) = 1 - (0.6 - 0.25)$	(A1)	3	Can be implied by correct answer
	= 0.65	(A1)		CAO; or equivalent
(b)	$P(L \mid G_C) = 0.9 P(L \mid G_{CB}) = 0.7$ $P(L \mid G_B) = 0.3$			
(i)	$P(G \cap L) \Rightarrow (a)(ii) \times 0.9$ (0.315)	M1		Follow through or correct
	0.25×0.7 (0.175)	M1		
	$[(a)(iii) - 0.25] \times 0.3$ (0.12)	M1		Follow through or correct
	Note: Each pair of multiplied			Ignore any multiplying factors
	probabilities must be > 0 to score the corresponding method mark			Ignore any additional terms
	\Rightarrow 0.315 + 0.175 + 0.12 = 0.61	A1	4	CAO
(ii)	Probability = $\{1 - (b)(i)\}^5$	M1		Allow $5 \times \{1 - (b)(i)\}^5$
	$= 0.39^5 = 0.009$	A1	2	AWRT (0.00902)
	3,000	Total	12	(

Q	Solution	Marks	Total	Comments
5 (a)	Mean = $\frac{1620}{30}$ = 54	B1	1	CAO; cannot be gained in (b)
(b)	98% (0.98) $\Rightarrow z = 2.32$ to 2.33 CI for μ is $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$	B1 M1		AWFW (2.3263) Used
	Thus $54 \pm 2.3263 \times \frac{8}{\sqrt{30}}$	A1F		Must have \sqrt{n} with $n > 1$ F on \overline{x} (but not 1620) and z only Allow $\overline{x} = 54$ even if B0 in (a)
	Hence $54 \pm (3.38 \text{ to } 3.42)$ or $(50.58 \text{ to } 50.62, 57.38 \text{ to } 57.42)$	A1	4	CAO & AWFW (54 & 3.4) AWFW (50.6, 57.4)
	Notes: Use of $n = 1$ in (b) must not be deemed as answer to (c) Use of $n = 1$ in (b) followed by use of $n = 1$ in (c) \Rightarrow (b) B1, (c) M1 A1 max Use of $n = 1$ with (b) or (c) not identified \Rightarrow (b) B1, (c) 0 max			AWI'W (30.0, 37.4)
(c)	Repeat of structure in (b) but with $n = 1$ and $1.96 \le z \le 3.03$	M1		Or equivalent
	Thus $54 \pm (18.56 \text{ to } 18.64)$ or	A1F		CAO & AWFW (54 & 18.6) If z-value incorrect, then must use $54 \pm 8 \times \lceil z \text{ from (b)} \rceil$
	(35.36 to 35.44, 72.56 to 72.64) Note: Accept sensible non-symmetric intervals such as: (0, 54 + 2.0537 × 8) = (0, 70.4 to 70.5)		2	AWFW (35.4, 72.6)
(d)	Nowhere or No	B1	1	CAO; or equivalent (ignore any reasoning)
		Total	8	

Q	Solution	Marks	Total	Comments
6(a)	Figure 1: 3 correct labelled points	B2	2	Deduct 1 mark if not labelled
	2 correct labelled points	(B1)		
(b)				
(~)	$b ext{ (gradient)} = 0.685$	B2		AWRT (0.68502)
	$b ext{ (gradient)} = 0.68 ext{ to } 0.69$	(B1)		AWFW
	$a ext{ (intercept)} = 0.344$	B2		AWRT (0.34404)
	$a ext{ (intercept)} = 0.34 ext{ to } 0.35$	(B1)		AWFW
	OR			
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$			630 40344 435 & 27853
		2.54		(all 4 attempted)
	or	(M1)		
	Attempt at S_{xx} & S_{xy}			654 & 448 (both attempted)
	Attempt at correct formula for b (gradient)	(m1)		
	$b ext{ (gradient)} = 0.685$	(A1)		AWRT
	a (intercept) = 0.344	(A1)		AWRT
	Accept a & b interchanged only if then identified correctly by a stated or used			
	equation in (c) or (d)		4	
	equation in (c) or (u)		4	
(c)	Figure 1: Correct line	B2dep		Dep on \geq B1 B1 or \geq A1 A0 in (b)
()	$(50, 34 \text{ to } 35)$ $(60, 40\frac{1}{2} \text{ to } 42)$	1		At least from $x \approx 55$ to 70
	(70, 47 ¹ / ₄ to 49) (80, 54 to 56)			Any two
	If B0 but evidence of use of line for ≥ 2	(M1)	2	Calc ⁿ or points shown on graph
	points within range $50 \le x \le 80$	(1111)	2	Care of points shown on graph
(d)(i)	Residual = $y - (a + bx)$	M1		Used or implied; or equivalent
	$[\mathbf{or} \ (a + bx) - y]$			
				(using graph); ≥ 1 residual correct
	H I J	A2,1		(2.98) AWFW; ignore signs only (3.19)
	2.5 to 4(.0) 2.5 to 4(.0) 2(.0) to 4(.0)	(-1 EE)		providing all the same (2.70)
		(-1 LL)		providing an the same (2.70)
	20 . 4(0)			AWFW; do not ignore sign (2.96)
	Mean = 2.3 to $4(.0)$	A1dep	4	Dep on previous A2 scored
(ii)	$y_{65} = a + b \times 65$	M1		Use shown or AWFW (44.9)
	or $y_{65} = 44$ to 45.5	IVII		, ,
	+ [(d)(i)] or [2.95 to 2.97]	m1		Use shown or AWFW; ignore sign of
				mean residual
	= 46 to 50	A1		AWFW (47.8)
	Special Cases: Line drawn/calc ^d on H, I & J			$v = 4.51 \pm 0.666 x \rightarrow 47.8$
	or	(B2)		$y_{\rm M} = 4.51 + 0.666x \Rightarrow 47.8$ OR no evidence of method {from (d)(i)
	linear interp ⁿ using I & $J = 47$ to 49	(\mathbf{D}^2)		and/or (d)(ii)}
	mode intoly using I as 3 - 47 to 47			Evidence of incorrect method \Rightarrow B0
	44 to 45.5 seen with no evidence \Rightarrow B1		3	, and a second means 7 20
		Total	15	

7 (a)(i) $B(16 \text{ or } 25 \text{ or } 40, 0.45)$ $P(S = 3) = \begin{cases} 16 \\ 3 \end{cases} (0.45)^3 (0.55)^{13}$ $A1$ $A1$ $A1$ $A1$ $A2$ $A2$ $A3$ $A4$ $A3$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$ $A4$	MS/SS1B (co	Solution	Marks	Total	Comments
(ii) $P(S = 3) = \binom{16}{3}(0.45)^3(0.55)^{13} \\ = 0.021 \text{ to } 0.022 \\ P(S < 10) = 0.3843 \text{ or } 0.2424 \\ = 0.242 \text{ to } 0.243 \\ = 0.7870 \text{ or } 0.6844 \\ P(p_1) \\ = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.654 \text{ to } 0.655 \\ P(S < 10) = 0.6$	_				
(ii) $P(S < 10) = 0.3843 \text{ or } 0.2424 \\ = 0.242 \text{ to } 0.243 \\ = 0.7870 \text{ or } 0.6844 \\ = 0.7870 \text{ or } 0.6844 \\ = 0.684 \text{ to } 0.655 \\ = 0.684 \text{ to } 0.685 \\ = 0.684 \text{ to } 0.684 \\ = 0.684$		$P(S = 3) = {16 \choose 3} (0.45)^3 (0.55)^{13}$	A1		T T
calculation (iii) P(15 \leq S \leq 20) $= 0.7870 \text{ or } 0.6844 (p_1)$ M1 $= 0.242 \text{ to } 0.243 \text{B1}$ $= 0.242 \text{ to } 0.243 \text{B1}$ $= 0.242 \text{ to } 0.243 \text{B1}$ $= 0.7870 \text{ or } 0.6844 (p_1)$ M1 $= 0.7870 \text{ or } 0.6844 (p_2)$ minus $0.1326 \text{ or } 0.2142 (p_2)$ $= 0.654 \text{ to } 0.655 \text{A1}$ OR B(40, 0.45) expressions stated for at least 3 terms within $14 \leq S \leq 20$ gives probability $= 0.654 \text{ to } 0.655 \text{A2}$ (iv) Mean, $\mu = np = 50 \times 0.45$ $= 22.5 \text{ or } 221/2$ Variance, $\sigma^2 = np(1-p)$ $= 50 \times 0.45 \times 0.55$ $= 12.3 \text{ to } 12.4 \text{B1}$ 2 WFW (12.375) (b)(i) Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children Passengers likely to be workers/school children 1 calculation AWFW (0.2424) Accept 3 dp accuracy $p_2 - p_1 \Rightarrow M0 M0 A0$ $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ Accept 3 dp accuracy/ truncation AWFW (0.6544) Or implied by a correct answer AWFW CAO (22.5 = 22 or 23 \Rightarrow ISW) Accept $12\frac{1}{2}$ or $\frac{99}{8}$ AWFW (12.375) Or equivalent; but must be a clear indication of non-independent events Or equivalent Accept other sensible reasons Distribution of types of passenger different		= 0.021 to 0.022	A1	3	AWFW (0.0215)
(iii) $P(15 \le S \le 20)$ $= 0.7870$ or 0.6844 (p_1) $= 0.7870$ or 0.6844 (p_2) $= 0.7870$ or 0.6844 (p_1) $= 0.654$ to 0.655 to	(ii)	P(S < 10) = 0.3843 or 0.2424	B1		
minus 0.1326 or 0.2142 (p_2) minus 0.1326 $(p_2$		= 0.242 to 0.243	B1	2	AWFW (0.2424)
minus 0.1326 or 0.2142 (p_2) $= 0.654$ to 0.655 OR B(40, 0.45) expressions stated for at least 3 terms within $14 \le S \le 20$ gives probability $= 0.654$ to 0.655 (iv) Mean, $\mu = np = 50 \times 0.45$ $= 22.5$ or $22\frac{1}{2}$ Variance, $\sigma^2 = np(1-p)$ $= 50 \times 0.45 \times 0.55$ $= 12.3$ to 12.4 B1 Canot use SCPs before 9.30 am Cannot use SCPs before 9.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens to not out at this time Passengers likely to be workers/school children $pairs/goups$ M1 A1 $p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ Accept 3 dp accuracy / truncation AWFW (0.6544) Or implied by a correct answer AWFW CAO (22.5 = 22 or 23 \Rightarrow ISW) Accept $12\frac{3}{8}$ or $\frac{99}{8}$ AWFW (12.375) Or equivalent; but must be a clear indication of non-independent events Or equivalent Accept other sensible reasons Distribution of types of passenger different	(iii)		M1		
B(40, 0.45) expressions stated for at least 3 terms within $14 \le S \le 20$ gives probability $= 0.654$ to 0.655 (A2) 3 AWFW (iv) Mean, $\mu = np = 50 \times 0.45$ $= 22.5$ or $22\frac{1}{2}$ Variance, $\sigma^2 = np(1-p)$ $= 50 \times 0.45 \times 0.55$ $= 12.3$ to 12.4 B1 2 ACCEPT $12\frac{1}{3}$ or $\frac{99}{8}$ AWFW (12.375) (b)(i) Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children		4 =/			$p_1 - (1 - p_2) \Rightarrow M1 M0 A0$ Accept 3 dp accuracy / truncation
(iv) Mean, $\mu = np = 50 \times 0.45$ $= 22.5$ or $22\frac{1}{2}$ Variance, $\sigma^2 = np(1-p)$ $= 50 \times 0.45 \times 0.55$ $= 12.3$ to 12.4 (b)(i) Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children $= 0.654$ to 0.655 B1 CAO (22.5 = 22 or 23 \Rightarrow ISW) Accept $12\frac{1}{8}$ or $\frac{99}{8}$ AWFW (12.375) Or equivalent; but must be a clear indication of non-independent events Or equivalent Accept other sensible reasons Distribution of types of passenger different		B(40, 0.45) expressions stated for at	(M1)		Or implied by a correct answer
Variance, $\sigma^2 = np(1-p)$ $= 50 \times 0.45 \times 0.55$ $= 12.3 \text{ to } 12.4$ B1 2 Accept $12\frac{3}{8}$ or $\frac{99}{8}$ AWFW (12.375) (b)(i) Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs before 9.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children			(A2)	3	AWFW
(b)(i) Non-independence of senior citizens travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs before 9.30 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children (iii) AWFW (12.375) AWFW (12.375) Or equivalent; but must be a clear indication of non-independent events Or equivalent Accept other sensible reasons Distribution of types of passenger different	(iv)		B1		CAO (22.5 = 22 or 23 \Rightarrow ISW)
travel Senior citizens tend to travel in pairs/groups (ii) 7.15 am is outside 9.30 am to 11.30 am Cannot use SCPs before 9.30 am Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children B1 Or equivalent; but must be a clear indication of non-independent events Or equivalent Accept other sensible reasons Distribution of types of passenger different		$= 50 \times 0.45 \times 0.55$	B1	2	o o
Cannot use SCPs before 9.30 am Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour' Value of p likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour' Value of p likely to be Smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school children	(b)(i)	travel Senior citizens tend to travel in	B1	1	_
	(ii)	Cannot use SCPs before 9.30 am Cannot use SCPs @ 7.15 am Cannot use SCPs during morning 'rush hour' Value of <i>p</i> likely to be smaller/different/zero Data not available Senior citizens not out at this time Passengers likely to be workers/school	B1		Accept other sensible reasons Distribution of types of passenger
Total 12		children	m · ·		
Paper 75					