Oxford Cambridge and RSA Examinations
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS
 MECHANICS 1, M1
 4761

MARK SCHEME

Qu	Answer	Mark	Comment
Section A			
1(i)(A)		B1	All forces correctly labelled with arrows. Angle not required. Accept T_{1}, T_{2}, W etc. No extra forces
1(i)(B)	Resolve \leftarrow $\begin{aligned} & T-10 \cos 60=0 \\ & T=5 \text { so } 5 \mathrm{~N} \end{aligned}$	M1 A1 [3]	Attempt at horiz resolution. No extra forces
1(ii)	Resolve \downarrow $\begin{aligned} & m g=10 \sin 60 \\ & m=0.8836 \ldots \text { so } 0.884(3 \text { s.f.) } \end{aligned}$	M1 A1 A1 [3]	Attempt at vertical resolution. No extra forces. Allow $m=10 \sin 60$ and $m=10 \cos 60$ Any reasonable accuracy
2(i)	$\sqrt{(-1)^{2}+4^{2}}=\sqrt{17} \mathrm{~ms}^{-1}$	M1 A1 [2]	Use of Pythagoras
2(ii)	$\begin{aligned} & \mathbf{v}=\binom{-1}{4}+4\binom{2}{5}=\binom{7}{24} \mathrm{~ms}^{-1} \\ & \mathbf{s}=\binom{2}{-1}+4\binom{-1}{4}+8\binom{2}{5}=\binom{14}{55} \mathrm{~m} \end{aligned}$	M1,A1 M1 A1 [4]	Must attempt all terms [If integration used M1 for integration attempted plus attempt at initial condition]
3(i)	$\mathrm{N} 2 \mathrm{~L} \rightarrow$ $T-8=5 \times 4$ $T=28 \text { so } 28 \mathrm{~N}$	M1 A1 A1 [3]	Use of N2L. Accept mga. All forces present. No extras Accept sign errors LHS
3(ii)	$\begin{aligned} & \mathrm{N} 2 \mathrm{~L} \rightarrow \\ & 40 \cos 30-8=5 a \\ & a=5.3287 \ldots \text { so } 5.33 \mathrm{~ms}^{-2}(3 \text { s.f. }) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$ [3]	N2L. Must be ma. All terms present. No extras $40 \cos 30$

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A (continued)} \\
\hline 4(i) \& \begin{tabular}{l}
a \\
58.8 N
\end{tabular} \& B1

[1] \& Accept any form for weight. Arrows required. Accn not required. Accept different tensions only if shown equal later. Accept single equivalent diagram. No spurious forces

\hline \multirow[t]{2}{*}{4(ii)(A)} \& For A, using N2L \& M1
A1 \& N2L. Allow ' $F=m g a$ ' and sign errors; condone one force missing. LHS correct. Accept $T-8 \times 9.8$

\hline \& For B , using N 2 L

$$
T-6 \times 9.8=8 a
$$ \& A1 \& Must be consistent with equation for A Signs consistent, all forces present and ' $F=m a$ ' used. Elimination of T or a.

\hline 4(ii) (B) \& Solve

$$
a=1.4 \text { so } 1.4 \mathrm{~ms}^{-1}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { E1 } \\
& {[5]}
\end{aligned}
$$
\] \&

\hline 5(i) \& \[
$$
\begin{aligned}
& \mathbf{a}=(2 t-1) \mathbf{i}+\mathbf{j} \\
& \mathbf{a}(2)=3 \mathbf{i}+\mathbf{j}
\end{aligned}
$$

\] \& | M1 A1 |
| :--- |
| [2] | \& Differentiation

\hline 5(ii)(A) \& i component of \mathbf{v} zero when $t^{2}-t=0$ so $t=0$ or $t=1$ \& M1 \& Finding when either cpt of \mathbf{v} is zero. Do not accept a or s.

\hline \& j cpt zero when $t=1$ \& A1 \& All three times correct

\hline \& At rest when both cpts zero so $t=1$ \& A1 \& ft their values

\hline 5(ii)(B) \& Travelling south when \mathbf{i} cpt zero so $t=0$ \& | A1 |
| :--- |
| [4] | \& ft their values

\hline
\end{tabular}

Qu	Answer	Mark	Comment
Section A (continued)			
6(i)		B1 [1]	All forces present. No extras. All labelled and with arrows. F up or down plane. No angles required. Accept W, mg, 196 N
6(ii)	$172 \cos 25=20 g \sin 40+F$	M1	Resolving parallel to the plane. All forces present. At least one force resolved. Accept $\pm F$ Weight term Accept negative only if consistent with the diagram
	$\mathrm{F}=29.89 \ldots$ so 29.9 N (3 s.f.)	B1 A1 [3]	
6(iii)	We need $T \cos 25<20 g \sin 40$ So $T<139.01$.. so 139 N (3 s.f.)	M1 A1 [2]	
			Section A Total: 36

Qu	Answer	Mark	Comment
Section B (continued)			
7(iv)	$\begin{aligned} & \int_{0}^{10}\left(4 t-0.2 t^{2}\right) d t \\ & =\left[2 t^{2}-\frac{2}{30} t^{3}\right]_{0}^{10} \\ & =200-\frac{2000}{30} \\ & =133 \frac{1}{3} \mathrm{~m} \text { or } 133 \mathrm{~m}(3 \text { s.f. }) \end{aligned}$	M1 A1 M1 A1 B1 [5]	Integration; must see evidence. Neglect limits. M0 for use of const accn At least one term correct. Neglect limits Dependent on $1^{\text {st }} \mathrm{M} 1$. Subst correct limits in definite integral or correct subst for arb constant. Need $\int_{0}^{10} \text { or }[]_{0}^{10} \text { or evidence of } t=0$ substituted Correct limits or arb constant At least 3 s.f. accuracy. Award if seen [SC M1 for correct attempt at numerical integration (i.e. find area under curve) M1 for attempt at trapezia with strips $\leq 1 \mathrm{~s}$ A2 only if accurate to 3 s.f.]

Qu	Answer	Mark	Comment
Section B (continued)			
8(i)(A)	Distance dropped is $0+.5 \times 9.8 t^{2}$ so $y=78.4-4.9 t^{2}$	M1,A1 E1	Must have ± 9.8 or ± 10 and initial speed zero Must be fully shown
8(i)(B)	$x=14 t$	B1 [4]	Allow if seen later
8(ii)(A)	$\begin{aligned} & y=0 \text { gives } 4.9 t^{2}=78.4 \\ & \text { so } t^{2}=16 \text { and } t=4 \end{aligned}$	M1 A1	Setting $y=0$ Only positive t need be considered
8(ii)(B)	$x=14 \times 4=56$ so 56 m	M1 A1 [4]	$\mathrm{ft} t$ only
8(iii)	$\begin{aligned} & y=78.4-4.9 \times\left(\frac{x}{14}\right)^{2} \\ & \text { giving } 40 y=3136-x^{2} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \\ & \text { [2] } \end{aligned}$	Substitute in correct expression to eliminate t Fully shown
8(iv)	$1^{\text {st }}$ stone takes $\frac{35}{14}=2.5$ s to reach $x=35$ $2^{\text {nd }}$ stone is at y s.t. $40 y=3136-35^{2}$	$\begin{gathered} \text { M1 } \\ \text { E1 } \end{gathered}$	
	so $y=47.775$	M1 E1 [4]	Use of this equation or equivalent method
8(v)	$2^{\text {nd }}$ stone is 47.775 m high after 2.5 s so $47.775=2.5 u-4.9 \times 2.5^{2}$ and $u=31.36$ so $31.4 \mathrm{~ms}^{-1}$ (3 s.f.) (31.45 \ldots if $s=48$ used)	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$ [4]	An appropriate choice of $u v a s t(\mathrm{~s})$ for the motion of the $2^{\text {nd }}$ stone $s=47.775$ or 48 and $t=2.5$ used Condone $s=48$ cao

AO	Range	Total	Question Number							
			1	2	3	4	5	6	7	8
1	14-22	22	1	-	2	3	1	1	8	6
2	14-22	16	1	3	1	1	1	1	4	4
3	18-26	20	2	3	2	1	1	2	4	5
4	7-15	9	1	-	-	1	3	2	1	1
5	3-11	5	1	-	1	-	-	-	1	2
	Totals	72	6	6	6	6	6	6	18	18

