4721 Core Mathematics 1

 $(x-6)^2-36+1$ 1 $=(x-6)^2-35$

B1 $(x-6)^2$

 $q = 1 - (\text{their } p)^2$ **M1**

q = -35**A1**

3

B1

A1

A1

4

2 **(i)**

B1 For x < 0, straight line joining (-2, 0) and (0, 4)

For x > 0, line joining (0,4) to **B1** (2, 2) and horizontal line joining (2,2) and (4,2)

(ii) Translation 1 unit right parallel to x axis

B1 2 Allow: 1 unit right, 1 along the x axis, 1 in x direction, allow vector notation e.g.

1 unit horizontally

3 $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 8x$

Attempt to differentiate (one **M1** of $3x^2$, -8x) Correct derivative

When x = 2, $\frac{dy}{dx} = -4$

Substitutes x = 2 into their $\frac{dy}{dx}$ **M1 A1**

 \therefore Gradient of normal to curve = $\frac{1}{4}$

B1 ft Must be numerical $=-1 \div \text{their } m$

 $y+1=\frac{1}{4}(x-2)$

Correct equation of straight **M1** line through (2, -1), any nonzero numerical gradient

x - 4y - 6 = 0

Correct equation in required form 7

	<u>21</u>	Mark Schen			January 20
4	(i)	m = 4	B 1	1	May be embedded
	(ii)	$6p^2 = 24$	M1		$(\pm)6p^2 = 24$
		$p^2 = 4$			or $36p^4 = 576$
		p=2	A1	2	
		or $p = -2$	A1	3	
	(iii)	$5^{2n+4} = 25$	M1		Addition of indices as powers of 5
		$\therefore 2n + 4 = 2$	M1	3	Equate powers of 5 or 25
		n = -1	A1	7	
5		$k = \sqrt{x}$		/	
		$k^2 - 8k + 13 = 0$			
			M1*		Use a substitution to obtain a quadratic (may be implied by squaring or rooting later) or factorise into 2 brackets each containing \sqrt{x}
		$k-4 = \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{(-8)^2 - 4 \times 1 \times 13}}{2}$	M1 dep		Correct method to solve resulting quadratic
			A1		
		$k = 4 \pm \sqrt{3}$	A1		$k = 4 \pm \sqrt{3}$ or $k = \frac{8 \pm \sqrt{12}}{2}$
					or $k = 4 \pm \frac{\sqrt{12}}{2}$
		$\therefore x = (4 + \sqrt{3})^2 \text{ or } x = (4 - \sqrt{3})^2$	M1		Recognise the need to square to obtain <i>x</i>
			M1		Correct method for squaring $+\sqrt{b}$ (3 or 4 term expansion)
		$x = 19 \pm 8\sqrt{3}$ or $19 \pm 4\sqrt{12}$	A1	7 7	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	B1*		
		When $x = 1$, $\frac{dy}{dx} = 2$	B1 dep	2	
	(ii)	$\frac{a^2 + 5 - 6}{a - 1} = 2.3$	M1		uses $\frac{y_2 - y_1}{}$
		a-1	A1		$x_2 - x_1$
		$a^2 - 2.3a + 1.3 = 0$			correct expression
			M1		correct method to solve a quadratic or correct
		(a-1.3)(a-1) = 0			factorisation and cancelling t get $a + 1 = 2.3$
					-

		Alternative method:			
		Equation of straight line through (1,6) with			
		m = 2.3 found then			
		$a^2 + 5 = 2.3a + "c"$ seen M1			
		with $c = 3.7$ A1			
		then as main scheme			
	(iii)	A value between 2 and 2.3	B1	1	2 < value < 2.3 (strict
	` /			7	inequality signs)
7	(i)	(a) Fig 3	B1		1 , 5
	(-)	(b) Fig 1	B1		
		(c) Fig 4	B1	3	
	(ii)	$-(x-3)^2$	<u>M1</u>		Quadratic expression with
	(11)	-(x-5)	1411		correct x^2 term and correct
					y-intercept and/or roots for
					their unmatched diagram
					(e.g. negative quadratic with
					y-intercept of –9 or root of 3
		$(2)^2$		2	for Fig 2)
		$y = -(x-3)^2$	A1	2	Completely correct equation
				5	for Fig 2
8	(i)	Centre $(-3, 2)$	B 1		2
		$(x+3)^2-9+(y-2)^2-4-4=0$	M1		Correct method to find r^2
		$r^2 = 17$			
		$r = \sqrt{17}$	A1	3	Correct radius
	(ii)	$x^{2} + (3x+4)^{2} + 6x - 4(3x+4) - 4 = 0$	M1*		substitute for x/y or attempt to
					get an equation in 1 variable
					only
			A1		correct unsimplified expression
					obtain correct 3 term quadratic
		$10x^2 + 18x - 4 = 0$	A1		correct method to solve their
		(5x-1)(x+2) = 0	M1		quadratic
			dep		
		$x = \frac{1}{5}$ or $x = -2$	A1		
		5 5			SD If AO AO are comment as it is
		23		c	SR If A0 A0, one correct pair of
		$y = \frac{23}{5}$ or $y = -2$	A1	6	values, spotted or from correct factorisation www B1
		3		Б	factorisation www BI
				9	
9	(i)	$f'(x) = -x^{-2} - \frac{1}{2}x^{-\frac{1}{2}}$	M1		Attempt to differentiate
		$1(x) = -x - \frac{1}{2}x^{-2}$	1411		Attempt to differentiate
		2	A1		$-x^{-2}$ or $-\frac{1}{2}kx^{-\frac{1}{2}}$ www
			AI		2
			A1	3	Fully correct expression
					<u>, </u>

	a. N Gonom	. •		
(ii)	$f''(x) = 2x^{-3} + \frac{1}{4}x^{-\frac{3}{2}}$	M1 A1 ft		Attempt to differentiate their f $f(x)$ One correctly differentiated
		A1 A1		term Fully correct expression www in either part of the question
	$f''(4) = \frac{2}{4^3} + \frac{1}{4} \cdot \frac{1}{8}$	M1		Substitution of $x = 4$ into their $f''(x)$
	$=\frac{1}{16}$	A1	5	oe single fraction www in either part of the question
10	$(-30)^2 - 4 \times k \times 25k = 0$	M1		Attempts $b^2 - 4ac$ involving k
	$900-100k^2 = 0$ k = 3 or $k = -3$	M1 B1 B1	4	States their discriminant = 0
11 (i)	P = 2 + x + 3x + 2 + 5x + 5x $= 14x + 4$	M1	2	Adds lengths of all 4 edges with attempt to use Pythagoras to find the missing length May be left unsimplified
(ii)	Area of rectangle = $3x(2+x) = 6x + 3x^2$	M1		Correct method – splitting or formula for area of trapezium
	Area of triangle = $\frac{1}{2}(3x)(4x) = 6x^2$			Tornida for area of trapezram
	Total area = $9x^2 + 6x$	A1	2	Convincing working leading to given expression AG
(iii)		B1 ft		ft on their expression for <i>P</i> from (i) unless restarted in (iii). (Allow >)
	$\frac{5}{2}$	B1		o.e. (e.g. $\frac{35}{14}$) soi by subsequent working
	$9x^{2} + 6x < 99$ $3x^{2} + 2x - 33 < 0$	B1		Allow ≤
	$(3x+11)(x-3) < 0$ $\left(-\frac{11}{3} < x < 3\right)$	M1		Correct method to find critical values
		В1		
		DI		x < 3 identified
	5	M1		x < 3 identified root from linear $< x <$ upper root from quadratic
	$\therefore \frac{5}{2} \le x < 3$		7 11	root from linear $< x <$ upper