Mark Scheme (Results) January 2009

GCE

GCE Chemistry (6CH01/01)

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question Number	Answer	Mark
$\mathbf{1}$	C	1

Question Number	Answer	Mark
2	D	1

Question Number	Answer	Mark
$\mathbf{3}$	C	$\mathbf{1}$

Question Number	Answer	Mark
4	C	$\mathbf{1}$

Question Number	Answer	Mark
5	B	$\mathbf{1}$

Question Number	Answer	Mark
6(a)	D	$\mathbf{1}$

Question Number	Answer	Mark
6(b)	C	$\mathbf{1}$

Question Number	Answer	Mark
$6(c)$	A	$\mathbf{1}$

Question Number	Answer	Mark
7	C	1

Question Number	Answer	Mark
$\mathbf{8}$	A	$\mathbf{1}$

Question Number	Answer	Mark
9	B	$\mathbf{1}$

Question Number	Answer	Mark
10	B	1

Question Number	Answer	Mark
11	B	1

Question Number	Answer	Mark
12	C	1
Question Number	Answer	Mark
13	D	1
Question Number	Answer	Mark
14	B	1
Question Number	Answer	Mark
15	A	1
Question Number	Answer	Mark
16	D	1
Question Number	Answer	Mark
17	D	1
Question Number	Answer	Mark
18	B	1

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (a) (i)}$	$\left(1 \mathrm{~s}^{2}\right) 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$	Noble gas core	
	ALLOW subscripts		$\mathbf{1}$
	IGNORE capital letters		
	ALLOW2p as $\mathrm{p}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}} \mathrm{p}_{\mathrm{z}}$ with two e^{-}in each		

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	$\left(1 \mathrm{~s}^{2}\right) 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{5}$	Noble gas core	
	ALLOW subscripts		
	ALNORE capital letters ALLOW 3p as $\mathrm{p}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}} \mathrm{p}_{\mathrm{z}}$ with two e in each in each		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (b) (\mathbf { i) ~ }}$	$\mathrm{Mg}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$		
	Species and balancing (1) State symbols CQ on correct species (1) NOTE		$\mathbf{2}$
	$\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{MgCl}_{2(\mathrm{~s})}$ scores (1)		

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	Ionic / electrovalent		$\mathbf{1}$
	IGNORE "lattice"/"bonding"/"giant"		

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	Correct number of electrons on each ion (1) Correct charges and symbols for each ion (1) Correct ratio of ions (1) ALLOW all dots or all crosses ALLOW correct charges shown outside the ions ALLOW Cl' correctly with " 2 " in front or after the Cl^{-}	Any covalency shown (0) i.e. any overlap of circles (e.g. Mg with a Cl or a Cl with a Cl) scores (0) overall, even if correct charges on ions and/or ratio of ions has been shown	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9 (c)}$	(Giant) metallic / metal		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \text { 19(d) } \\ & \text { QWC } \end{aligned}$	Magnesium ion / Mg^{2+} has a larger charge (density) (than the sodium ion / Na^{+}) OR Magnesium $/ \mathrm{Mg} / \mathrm{Mg}$ atom $/ \mathrm{Mg}^{2+}$ (ion) contributes two electrons/more electrons (to the "sea" of electrons) magnesium ions $/ \mathrm{Mg}^{2+}$ smaller (than sodium ions) (1) NOTE " Mg^{2+} is smaller than $\mathrm{Na}{ }^{+}$" would score first 2 marks above magnesium ions / Mg^{2+} have greater attraction for ("sea" of) electrons (than sodium ions / Na^{+}) OR More energy/heat required to overcome (attractive) forces/bonds (between cations and "sea" of electrons) in magnesium (compared to sodium) Mark each point independently	Any references to the bonding being ionic scores (0) overall Any references to "molecules"/intermolecular forces scores (0) overall JUST "stronger bonds in Mg" JUST "stronger bonds in Mg"	3

Question Number	Acceptable Answers	Reject	Mark
20 (a)(i)	- Idea of impact by electrons, with energy: fast electrons strike sample / high energy electrons / accelerated electrons / electrons fired at sample/sample bombarded with electrons/blasted with electrons from electron gun - Idea of electron removal: removes an electron/knocks out electron(s) $/ X \rightarrow X^{+}+e^{-}$ Mark each point independently	"electron gun" alone an incorrect equation negates second mark	2

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	Electric field/electrostatic field / charged plates / voltage differential across plates/negative field/negatively charged plates	Electric current/electric coil/magnetic field	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Magnetic field / magnet / electromagnet / magnetic plates	"Negative magnetic field"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 0 (b)}$	$((50.0 \times 4.3)+(52.0 \times 83.8)+(53.0 \times 9.5)+$ $(54.0 \times 2.4)) \div 100$ (1)		$\mathbf{2}$
	$=52.1$ (must be to 3 SF)		
	NOTE: $52.057 / 52.06$ scores (1) with or without any working		
	IGNORE g or g mol $^{-1}$ but wrong units lose a mark Correct answer with no working (2)		

Question Number	Acceptable Answers	Reject	Mark
20(c)	Same electronic structures/same electronic configurations/same electronic arrangements/same number of electrons/same total number of electrons ALLOW "same number of protons and same number of electrons"	Just "same number of outer electrons" (0)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
20(d)	d (block) ALLOW"D" (BLOCK) IGNORE "transition metal/element" if d (block) stated in answer IGNORE "group"	Just transition element(s) / transition metal(s)	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
21(a)	Enthalpy / (heat) energy / heat required OR enthalpy / (heat) energy / heat change (1) to remove one electron (1) from each atom of one mole of gaseous atoms OWTTE (e.g. "energy required to remove one mole of electrons from one mole of gaseous atoms" scores all three marks) NOTE: The equation: $\mathrm{X}_{(\mathrm{g})} \rightarrow \mathrm{X}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}$ scores the last two marks.	"Energy given out...." for first mark. If an incorrect equation is given after a correct definition, (2) scored.	3

Question Number	Acceptable Answers	Reject	Mark
21 (b)	$\mathrm{Na}^{+}{ }_{(\mathrm{g})} \rightarrow \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-}$ OR $\mathrm{Na}^{+}{ }_{(\mathrm{g})}-\mathrm{e}^{-} \rightarrow \mathrm{Na}^{2+}{ }_{(\mathrm{g})}$ Species (1) ALLOW "e" for "e"" State symbols (1) $2^{\text {nd }}$ mark is CQ on $1^{\text {st }}$ The following score max (1): $\begin{equation*} \mathrm{X}_{(\mathrm{g})}^{+} \rightarrow \mathrm{X}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-} \tag{1} \end{equation*}$ OR $\begin{align*} & \mathrm{X}_{(\mathrm{g})}^{+}-\mathrm{e}^{-} \rightarrow \mathrm{X}^{2+}{ }_{(\mathrm{g})}(1) \\ & \mathrm{Na}_{(\mathrm{g})} \rightarrow \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+2 \mathrm{e}^{-}(\tag{1}\\ & \mathrm{OR} \\ & \mathrm{Na}_{(\mathrm{g})} \rightarrow \mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{e}^{-}(1) \tag{1} \end{align*}$ OR $\mathrm{Na}^{+}{ }_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{Na}^{2+}{ }_{(\mathrm{g})}(1)$ OR $\mathrm{Na}^{+}{ }_{(\mathrm{g})}-\mathrm{e}^{-} \rightarrow \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-}$	$" e^{2-"}$ $\begin{equation*} \mathrm{Na}^{2+}{ }_{(\mathrm{g})}+\mathrm{e}^{-} \rightarrow \mathrm{Na}_{(\mathrm{g})}^{+}(0) \tag{1} \end{equation*}$	2

Question Number	Acceptable Answers	Reject	
21(c)(ii) QWC (1)	More protons / greater nuclear charge/proton number increases ALLOW "effective nuclear charge increases across the Period" outer electrons in same shell / energy level OR same shielding OR similar shielding OR decrease in atomic radius OR outer electron closer to nucleus OR attracting the same number of (occupied) electron shells / energy levels	Just "increasing atomic	
	(1) greater (force of) attraction between nucleus and (outer) electron(s) / (outer) electron(s) held more strongly by nucleus		

Question Number	Acceptable Answers	Reject	Mark
21(c)(iii)	(Outermost) electron in (3-)p (1) sWC-shell/sub-level/orbital sub of higher energy OR (slightly) shielded by (3-)s (electrons) OR (sub-shell) further from nucleus (1) NOTE: Penalise use of the terms "s-shell" or "p-shell" once only.		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
21(d)	$\mathrm{S}^{\mathrm{S} \mathrm{S}^{+}}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
22(a)	(Electrostatic attraction between two nuclei and the) shared pair (1) of electrons (between them) (1)		$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
22(b)	(Dative) pair of e between N and O (1) Three bond pairs between N and N (1) Lone pair on left-hand N and three lone pairs on O atom		$\mathbf{3}$
	ALLOW dots and crosses OR all dots OR all crosses Stand alone marks Non-bonding electrons on N and O do not have to be shown in pairs		

Ignore sig figs in this question

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Energy absorbed $=30 \times 4.18 \times 4.9=614$ (J)	615	
	Note:		
	610 to 2 sig figs	"614 kJ" etc	
	614.5 to 4 sig figs 614.46 to 5 sig figs lgnore any signs, + OR - Answer alone scores the mark ALLOW "0.614 kJ"		

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Moles $=\frac{2.00}{100}=0.02(00)(\mathrm{mol})$		$\mathbf{1}$
	Answer alone scores the mark ALLOW0.01998 etc for use of $\mathrm{Mr}=100.1$		

Question Number	Acceptable Answers	Reject	Mark
23(a)(iii)	$\begin{align*} & \Delta \mathrm{H}^{\ominus}{ }_{2}=\frac{\text { Answer to (a)(i) in kJ }}{\text { Answer to (a)(ii) }} \\ & =\frac{0.614}{0.02(00)} \\ & \left(\Delta \mathrm{H}_{2}^{\ominus}\right)=+31 /+30.7\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{2} \end{align*}$ Positive sign (1) stand alone Answer (1) If mass of solution used is 32 g in a(i), answer is $\Delta \mathrm{H}^{\circ}{ }_{2}=+32.8 /+33\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If mass of solution used is 2 g in $\mathrm{a}(\mathrm{i})$, $\Delta \mathrm{H}^{9}{ }_{2}=+2.05 /+2.0 /+2.048\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$\Delta \mathrm{H}^{\ominus}{ }_{1}=2 \times \Delta \mathrm{H}^{\ominus}{ }_{2}-\Delta \mathrm{H}_{3}^{\ominus}$		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
23(b)(ii)	$\Delta \mathrm{H}^{\mathrm{e}}{ }_{1}=2 \times \mathrm{x}+31-(-34)$ $\left(\Delta \mathrm{H}^{\ominus}{ }_{1}\right)=+96\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ OR $2 x+30.7-(-34)=+95.4 /+95$ Answer (1) Positive sign (1) NOTE: For +ve answers, penalise the omission of the " + " sign ONCE ONLY in (a)(iii) and (b)(ii) Consequential on (a)(iii) and formula in (b)(i) - the arithmetic must be checked ALLOW: $+96 /+95.4 /+95\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(2)$ EVEN IF $\Delta \mathrm{H}^{\mathrm{o}}{ }_{1}=\Delta \mathrm{H}^{\mathrm{o}}{ }_{2}-\Delta \mathrm{H}^{\mathrm{o}}{ }_{3}$ GIVEN IN (b)(i) NOTE If use $\Delta \mathrm{H}_{1}{ }_{1}=\Delta \mathrm{H}^{\circ}{ }_{2}-\Delta \mathrm{H}_{3}{ }_{3}$ and mass of solution used is 30 g $\Delta \mathrm{H}_{1}{ }_{1}=+65\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If use $\Delta \mathrm{H}_{1}{ }_{1}=\Delta \mathrm{H}^{\ominus}{ }_{2}-\Delta \mathrm{H}_{3}{ }_{3}$ and mass of solution used is 32 g $\Delta \mathrm{H}_{1}^{\mathrm{o}}=+67\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If use $\Delta \mathrm{H}^{\ominus}{ }_{1}=\Delta \mathrm{H}^{\circ}{ }_{2}-\Delta \mathrm{H}_{3}{ }_{3}$ and mass of solution used is 2 g $\Delta \mathrm{H}_{1}^{\mathrm{o}}=+36\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If use $\Delta \mathrm{H}^{\ominus}{ }_{1}=2 \Delta \mathrm{H}_{2}{ }_{2}-\Delta \mathrm{H}_{3}{ }_{3}$ and mass of solution used is 32 g $\Delta \mathrm{H}_{1}^{\mathrm{e}}=+100\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ If use $\Delta \mathrm{H}^{\ominus}{ }_{1}=2 \Delta \mathrm{H}^{\ominus}{ }_{2}-\Delta \mathrm{H}_{3}{ }_{3}$ and mass of solution used is 2 g $\Delta \mathrm{H}^{\mathrm{o}}=+38\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$		2

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	Error for balance: $\begin{aligned} & =(\pm) 2 \times \frac{0.01}{2.00} \times 100 \% \\ & =(\pm) 1.00 \% / 1.0 \% / 1 \%(1) \end{aligned}$ ALLOW (\pm) 0.5% also scores Correct answer with no working scores (1) Error for measuring cylinder: $\begin{aligned} & =(\pm) \frac{0.5}{30} \times 100 \% \\ & =(\pm) 1.7 \% / 1.67 \%(1) \end{aligned}$ Correct answer with no working scores	1.6(6)\% (0)	2

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	Pipette or burette	"biuret"	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
24(a)	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$		1
Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	Cracking		1
Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	Reforming / dehydrogenation		1
Question Number	Acceptable Answers	Reject	Mark
24(c)	Skeletal		1
Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	$\mathrm{C}_{9} \mathrm{H}_{20}$	Structural / displayed formulae	1
Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	3-ethyl-4-methylhexane ALLOW methyl before ethyl 4-methyl-3-ethylhexane 3-methyl-4-ethylhexane 4-ethyl-3-methylhexane 3,4-ethylmethylhexane IGNORE incorrect "punctuation"		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	Enthalpy change Step A: $\begin{align*} & \overline{\mathrm{E}}(\mathrm{C}-\mathrm{H})+-\overline{\mathrm{E}}(\mathrm{H}-\mathrm{Cl}) \\ & =+413+(-432) \\ & =-19\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Correct answer with no working (1) Enthalpy change Step B: $\begin{align*} & \overline{\mathrm{E}}(\mathrm{C}-\mathrm{H})+-\overline{\mathrm{E}}(\mathrm{C}-\mathrm{Cl}) \\ & =+413+(-346) \\ & =(+) 67\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \tag{1} \end{align*}$ Correct answer with no working (1) NOTE Both values correct scores (3) One of the two values correct scores (2) NOTE Neither value is correct, but a clear statement that $\Delta \mathrm{H}=$ bonds broken + bonds made scores (1)	(+)19 scores (0) for this mark -67 scores (0) for this mark	3

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	Step A as (AH) is negative/exothermic (compared with a positive/endothermic value for Step B) OR Step A as it is the more energetically favourable Mark CQ on the energy changes in (e)(i)	(e) e.g if +19 and -67 given in (e)(i), Step B will be justified for the CQ mark; e.g. if both values endothermic, selects the less endothermic value OR if both values exothermic, selects the more exothermic value IGNORE statements such as "no harmful by-products" etc.	

Question Number	Acceptable Answers	Reject	Mark
24(f)	Volume of bromomethane $=$ $1000000 \quad \times 2.5 \times 10^{5}$ $=1.25\left(\mathrm{dm}^{3}\right)$ Correct answer with no working scores the mark	$\mathbf{1}$	

