

Mark Scheme (Results) January 2009

GCE

GCE Chemistry (6CH01/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

• write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear

• select and use a form and style of writing appropriate to purpose and to complex subject matter

• organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A

Question	Answer	Mark
Number		
1	C	1
Question	Answer	Mark
Number	Allswei	Mark
2	D	1
Question	Answer	Mark
Number		
3	C	1
Question	Answer	Mark
Number	Allstiel	mark
4	C	1
4	L	
Question	Answer	Mark
Number		
5	В	1
		· · · · · ·
Question	Answer	Mark
Number		
6(a)	D	1
0(a)		
Question	Answer	Mark
Number		
6(b)	C	1
Question	Answer	Mark
Number		
6(c)	A	1
-(-)		•
Question	Answor	Mark
Question	Answer	Mark
Number		
7	С	1
	_	
Question	Answer	Mark
Number		
8	Α	1
L	I	<u> </u>
Question	Answer	Mark
Number		main
9	В	1
Question	Answer	Mark
Number		
10	В	1
L	•	l
Question	Answer	Mark
Number		mark
	D	
11	В	1

Question Number	Answer	Mark
12	C	1

Question Number	Answer	Mark
13	D	1

Question Number	Answer	Mark
14	В	1

Question Number	Answer	Mark
15	A	1

Question Number	Answer	Mark
16	D	1

Question Number	Answer	Mark
17	D	1

Question Number	Answer	Mark
18	В	1

Section **B**

Question Number	Acceptable Answers	Reject	Mark
19(a)(i)	(1s ²)2s ² 2p ⁶ 3s ²	Noble gas core	1
	ALLOW subscripts		
	IGNORE capital letters		
	ALLOW 2p as $p_x p_y p_z$ with two e ⁻ in each		

Question Number	Acceptable Answers	Reject	Mark
19(a)(ii)	(1s ²)2s ² 2p ⁶ 3s ² 3p ⁵ ALLOW subscripts IGNORE capital letters	Noble gas core	1
	ALLOW 2p as $p_x p_y p_z$ with two e ⁻ in each ALLOW 3p as $p_x p_y p_z$ with two, two, one e ⁻ in each		

Question Number	Acceptable Answers	Reject	Mark
19(b)(i)	$\begin{array}{rcl} & \mbox{Mg}_{(s)} + \mbox{Cl}_{2(g)} & \rightarrow & \mbox{MgCl}_{2(s)} \\ & \mbox{Species and balancing (1)} \\ & \mbox{State symbols CQ on correct species (1)} \\ & \mbox{NOTE} \\ & \mbox{Mg}_{(s)} + 2\mbox{Cl}_{(g)} & \rightarrow & \mbox{MgCl}_{2(s)} \mbox{ scores (1)} \end{array}$		2

Question Number	Acceptable Answers	Reject	Mark
19(b)(ii)	Ionic / electrovalent		1
	IGNORE "lattice" / "bonding" / "giant"		

Question Number	Acceptable Answers	Reject	Mark
19(b)(iii)	Correct number of electrons on each ion (1) Correct charges and symbols for each ion (1) Correct ratio of ions (1) Correct charges shown outside the ions AllOW Cl' correctly with "2" in front or after the Cl'	Any covalency shown (0) i.e. any overlap of circles (e.g. Mg with a Cl or a Cl with a Cl) scores (0) overall, even if correct charges on ions and/or ratio of ions has been shown	3

Question Number	Acceptable Answers	Reject	Mark
19(c)	(Giant) metallic / metal		1

Question Number	Acceptable Answers	Reject	Mark
19(d) QWC	Magnesium ion / Mg ²⁺ has a larger charge (density) (than the sodium ion / Na ⁺)	Any references to the bonding being ionic scores (0) overall	3
	OR Magnesium/Mg/Mg atom/Mg ²⁺ (ion) contributes two electrons/more electrons (to the "sea" of electrons) (1)	Any references to "molecules"/intermolecular forces scores (0) overall	
	magnesium ions / Mg ²⁺ smaller (than sodium ions) (1)		
	NOTE "Mg ²⁺ is smaller than Na ^{+"} would score first 2 marks above		
	magnesium ions / Mg ²⁺ have greater attraction for ("sea" of) electrons (than sodium ions / Na ⁺)	JUST "stronger bonds in Mg"	
	OR More energy/heat required to overcome (attractive) forces/bonds (between cations and "sea" of electrons) in magnesium (compared to sodium) (1)	JUST "stronger bonds in Mg"	
	Mark each point independently		

Question Number	Acceptable Answers	Reject	Mark
20 (a)(i)	Idea of impact by electrons, with energy: fast electrons strike sample / high energy electrons / accelerated electrons / electrons fired at sample/sample bombarded with electrons/blasted with electrons from electron gun (1)	"electron gun" alone	2
	Idea of electron removal:		
	removes an electron/knocks out electron(s)/X \rightarrow X ⁺ + e ⁻ (1)	an incorrect equation negates second mark	
	Mark each point independently		

Question Number	Acceptable Answers	Reject	Mark
20(a)(ii)	Electric field/electrostatic field / charged plates / voltage differential across plates/negative field/negatively charged plates	Electric current/electric coil/magnetic field	1

Question Number	Acceptable Answers	Reject	Mark
20(a)(iii)	Magnetic field / magnet / electromagnet / magnetic plates	"Negative magnetic field"	1

Question Number	Acceptable Answers	Reject	Mark
20(b)	((50.0 x 4.3) + (52.0 x 83.8) + (53.0 x 9.5) + (54.0 x 2.4)) ÷ 100 (1) = 52.1 (must be to 3 SF) (1) NOTE: 52.057/52.06 scores (1) with or without any working <i>IGNORE</i> g or g mol ⁻¹ but wrong units lose a mark		2
	Correct answer with no working (2)		

Question Number	Acceptable Answers	Reject	Mark
20(c)	Same electronic structures/same electronic configurations/same electronic arrangements/same number of electrons/same total number of electrons	Just "same number of outer electrons" (0) OR	1
	ALLOW "same number of protons and same number of electrons"	Just "same number of protons" (0)	

Question Number	Acceptable Answers	Reject	Mark
20(d)	d (block) <i>ALLOW</i> "D" (BLOCK) <i>IGNORE</i> "transition metal/element" if d (block) stated in answer <i>IGNORE</i> "group"	Just transition element(s) / transition metal(s)	1

Question	Acceptable Answers	Reject	Mark
Number 21(a)	Enthalpy / (heat) energy / heat required	"Energy given out" for first mark.	3
	GR		
	enthalpy / (heat) energy / heat change (1)		
	to remove one electron (1)		
	from each atom of one mole of gaseous atoms OWTTE		
	(1)		
	(e.g. "energy required to remove one mole of electrons from one mole of gaseous atoms" scores all three marks)		
	NOTE:		
	The equation:	If an incorrect equation is given after a correct definition, (2)	
	$X_{(g)} \rightarrow X^{+}_{(g)} + e^{-1}$	scored.	
	scores the last two marks.		

Question Number	Acceptable Answers	Reject	Mark
21(b)	$Na^{+}_{(g)} \rightarrow Na^{2+}_{(g)} + e^{-}$ OR $Na^{+}_{(g)} - e^{-} \rightarrow Na^{2+}_{(g)}$ Species (1) <i>ALLOW</i> "e" for "e ⁻ " State symbols (1) 2 nd mark is CQ on 1 st The following score max (1): $X^{+}_{(g)} \rightarrow X^{2+}_{(g)} + e^{-} (1)$ OR $X^{+}_{(g)} - e^{-} \rightarrow X^{2+}_{(g)} (1)$ $Na_{(g)} \rightarrow Na^{2+}_{(g)} + 2e^{-} (1)$ OR $Na_{(g)} \rightarrow Na^{+}_{(g)} + e^{-} (1)$ OR $Na^{+}_{(g)} + e^{-} \rightarrow Na^{2+}_{(g)} (1)$ OR $Na^{+}_{(g)} - e^{-} \rightarrow Na^{2+}_{(g)} + e^{-} (1)$	"e ²⁻ " Na ²⁺ _(g) + e ⁻ → Na ⁺ _(g) (0)	2

Question Number	Acceptable Answers	Reject	Mark
21(c)(i)	ANSWER		3

Question Number	Acceptable Answers	Reject	Mark
21(c)(ii) QWC	More protons / greater nuclear charge/proton number increases (1) ALLOW "effective nuclear charge increases across the Period" outer electrons in same shell / energy level OR same shielding OR similar shielding OR decrease in atomic radius OR outer electron closer to nucleus OR attracting the same number of (occupied) electron shells / energy levels (1) greater (force of) attraction between nucleus and (outer) electron(s) / (outer) electron(s) held more strongly by nucleus (1)	Just "increasing atomic number"	3
	Mark each point independently		

Question Number	Acceptable Answers	Reject	Mark
21(c)(iii) QWC	(Outermost) electron in (3-) p sub -shell/ sub -level/orbital		2
	(1) of higher energy OR (slightly) shielded by (3-)s (electrons) OR (sub-shell) further from nucleus (1) <i>NOTE</i> : Penalise use of the terms "s-shell" or "p-shell" once only.		

Question Number	Acceptable Answers	Reject	Mark
21(d)	S [−] S S ⁺		1

Question Number	Acceptable Answers	Reject	Mark
22(a)	(Electrostatic attraction between two nuclei and the) shared pair (1) of electrons (between them) (1)		2

Question Number	Acceptable Answers	Reject	Mark
22(b)	(Dative) pair of e ⁻ between N and O (1) Three bond pairs between N and N (1) Lone pair on left-hand N and three lone pairs on O atom (1)		3
	ALLOW dots and crosses OR all dots OR all crosses		
	Stand alone marks		
	Non-bonding electrons on N and O do not have to be shown in pairs		

Ignore sig figs in this question

Question Number	Acceptable Answers	Reject	Mark
23(a)(i)	Energy absorbed = 30 x 4.18 x 4.9 = 614 (J) Note: 610 to 2 sig figs 614.5 to 4 sig figs 614.46 to 5 sig figs Ignore any signs, + OR - Answer alone scores the mark ALLOW "0.614 kJ"	615 "614 kJ" etc	1

Question Number	Acceptable Answers	Reject	Mark
23(a)(ii)	Moles = <u>2.00</u> = 0.02(00)(mol) 100 Answer alone scores the mark <i>ALLOW</i> 0.01998 etc for use of Mr = 100.1		1

Question Number	Acceptable Answers	Reject	Mark
23(a)(iii)	$\frac{\Delta H^{e_{2}}}{Answer to (a)(i) in kJ}$ Answer to (a)(ii)		2
	= 0.614 0.02(00)		
	$(\Delta H_2^{\circ}) = +31 / +30.7 \text{ (kJ mol}^{-1})$ (2)		
	Positive sign (1) stand alone		
	Answer (1)		
	If mass of solution used is 32 g in a(i), answer is ΔH°_2 = +32.8 / +33 (kJ mol ⁻¹)		
	If mass of solution used is 2 g in a(i), $\Delta H_2^{e} = +2.05 / +2.0 / +2.048 (kJ mol^{-1})$		

Question Number	Acceptable Answers	Reject	Mark
23(b)(i)	$\Delta H^{e_1} = 2 \times \Delta H^{e_2} - \Delta H^{e_3}$		1

Question	Acceptable Answers	Reject	Mark
Number			
23(b)(ii)	$\Delta H^{\circ}_{1} = 2 \times +31 - (-34)$ $(\Delta H^{\circ}_{1}) = +96 \text{ (kJ mol}^{-1})$ OR $2 \times +30.7 - (-34) = +95.4 / +95$ Answer (1) Positive sign (1)		2
	NOT E : For +ve answers, penalise the omission of the "+" sign ONCE ONLY in (a)(iii) and (b)(ii) Consequential on (a)(iii) and formula in (b)(i) - the arithmetic must be checked		
	ALLOW:		
	+ 96 /+95.4 / +95 (kJ mol ⁻¹) (2) EVEN IF $\Delta H^{\circ}_{1} = \Delta H^{\circ}_{2} - \Delta H^{\circ}_{3}$ GIVEN IN (b)(i)		
	NOTE		
	If use $\Delta H_{1}^{e} = \Delta H_{2}^{e} - \Delta H_{3}^{e}$ and mass of solution used is 30 g $\Delta H_{1}^{e} = +65 \text{ (kJ mol}^{-1}\text{)}$		
	If use $\Delta H_{1}^{e} = \Delta H_{2}^{e} - \Delta H_{3}^{e}$ and mass of solution used is 32 g $\Delta H_{1}^{e} = +67 \text{ (kJ mol}^{-1}\text{)}$		
	If use $\Delta H_{1}^{e} = \Delta H_{2}^{e} - \Delta H_{3}^{e}$ and mass of solution used is 2 g $\Delta H_{1}^{e} = +36 \text{ (kJ mol}^{-1}\text{)}$		
	If use $\Delta H_{1}^{e} = 2\Delta H_{2}^{e} - \Delta H_{3}^{e}$ and mass of solution used is 32 g $\Delta H_{1}^{e} = +100 \text{ (kJ mol}^{-1}\text{)}$		
	If use $\Delta H_{1}^{e} = 2\Delta H_{2}^{e} - \Delta H_{3}^{e}$ and mass of solution used is 2 g $\Delta H_{1}^{e} = +38(kJ mol^{-1})$		

Question Number	Acceptable Answers	Reject	Mark
23(c)(i)	Error for balance: = (±) 2 x <u>0.01</u> x 100% = (±) 1.00%/1.0%/1% (1) ALLOW (±) 0.5% also scores		2
	(1)		
	Correct answer with no working scores (1)		
	Error for measuring cylinder:		
	$= (\pm) \frac{0.5}{30} \times 100\%$		
	= (±) 1.7%/1.67% (1) Correct answer with no working scores (1)	1.6(6)% (0)	

Question Number	Acceptable Answers	Reject	Mark
23(c)(ii)	Pipette or burette	"biuret"	1

Question Number	Acceptable Answers	Reject	Mark
24(a)	C_nH_{2n+2}		1

Question Number	Acceptable Answers	Reject	Mark
24(b)(i)	Cracking		1

Question Number	Acceptable Answers	Reject	Mark
24(b)(ii)	Reforming / dehydrogenation		1

Question Number	Acceptable Answers	Reject	Mark
24(c)	Skeletal		1

Question Number	Acceptable Answers	Reject	Mark
24(d)(i)	C ₉ H ₂₀	Structural / displayed formulae	1

Question Number	Acceptable Answers	Reject	Mark
24(d)(ii)	3-ethyl-4-methylhexane ALLOW methyl before ethyl 4-methyl-3-ethylhexane 3-methyl-4-ethylhexane 4-ethyl-3-methylhexane 3,4-ethylmethylhexane IGNORE incorrect "punctuation"		1

Question Number	Acceptable Answers	Reject	Mark
24(e)(i)	Enthalpy change Step A: Ē(C-H) + - Ē (H-Cl) = + 413 + (-432) = - 19 (kJ mol ⁻¹) (1) Correct answer with no working (1) Enthalpy change Step B:	(+)19 scores (0) for this mark	3
	Ē(C-H) + - Ē (C-Cl) = + 413 + (-346) = (+) 67 (kJ mol ⁻¹) (1) Correct answer with no working (1)	-67 scores (0) for this mark	
	 NOTE Both values correct scores (3) One of the two values correct scores (2) NOTE Neither value is correct, but a clear statement that ΔH = bonds broken + bonds made scores (1) 		

Question Number	Acceptable Answers	Reject	Mark
24(e)(ii)	 Step A as (ΔH) is negative/exothermic (compared with a positive/endothermic value for Step B) OR Step A as it is the more energetically favourable Mark CQ on the energy changes in (e)(i) e.g if +19 and -67 given in (e)(i), Step B will be justified for the CQ mark; e.g. if both values endothermic, selects the less endothermic value OR if both values exothermic, selects the more exothermic value <i>IGNORE</i> statements such as "no harmful by-products" etc. 		1

Question Number	Acceptable Answers	Reject	Mark
24(f)	Volume of bromomethane = <u>5</u> x 2.5 x 10 ⁵ 1 000 000		1
	 = 1.25 (dm³) Correct answer with no working scores the mark 		