Write your name here			
Surname		Other names	
Edexcel GCE	Centre Number		Candidate Number
Chemistry Advanced Subsidia Unit 2: Application o	ry	iples of	Chemistry
Friday 16 January 2009 – N Time: 1 hour 15 minutes	Iorning		Paper Reference 6CH02/01
Candidates may use a calcula	itor.		Total Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar,
 - as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

edexcel

advancing learning, changing lives

N34080A

©2009 Edexcel Limited.

7/7/7/2/2

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠.
If you change your mind, put a line through the box ≅ and then mark your new answer with a cross ⊠.

1 10.0 cm³ of 0.250 mol dm⁻³ potassium hydroxide solution was placed in a conical flask and titrated with 0.200 mol dm⁻³ hydrochloric acid solution, using phenolphthalein as an indicator.

(a) What colour would phenolphthalein turn at the end-point in this titration?

- A Colourless
- 🛛 **B** Pink
- C Yellow
- **D** Orange

(b) The best piece of apparatus to accurately measure out 10.0 cm³ is a

- A pipette.
- **B** burette.
- C syringe.
- **D** measuring cylinder.
- (c) What volume of 0.200 mol dm⁻³ hydrochloric acid solution was added by the end-point?
- (1)

(1)

(1)

A 8.00 cm³
 B 10.00 cm³

C $12.50 \, \text{cm}^3$

 \times

 \mathbf{X}

D 25.00 cm^3

(Total for Question 1 = 3 marks)

Use this space for any rough working. Anything you write in this space will gain no credit.

2	Which of these metal hydroxides is the most soluble in water?	
-	\mathbf{X} A Barium hydroxide	
	\blacksquare B Calcium hydroxide	
	\square C Magnesium hydroxide	
	\square D Strontium hydroxide	
	(Total for Question 2 = 1 mark)	
	(Total for Question 2 – T mark)	
3	Which of these metals will give a lilac flame colour?	
	🖾 A Sodium	I
	B Calcium	<u> </u>
	C Potassium	I
	D Magnesium	I
	(Total for Question 3 = 1 mark)	
4		
	A 3-methylpentan-2-ol	
	■ B Pentan-2-ol	
	C Pentan-3-ol	
	\square D 2-methylpentan-2-ol	<u> </u>
	(Total for Question 4 = 1 mark)	
5	Which of these statements about fluorine is not correct?	
	A It is a gaseous element at room temperature and pressure.	
	B It can react with chloride ions to form chlorine.	
	\square C It forms salts with Group 1 metals.	
	D It is less electronegative than chlorine.	I
	(Total for Question 5 = 1 mark)	
	Use this space for any rough working. Anything you write in this space will gain no credit.	
	and and and the second stands the second stand for the second s	

		ing liquids all have the same number of electrons in each molecule. Which y to have the lowest boiling point?
X	A	CH ₃ CH ₂ CH ₂ CH ₂ OH
X	B	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃
X	C	CH ₃ C(CH ₃) ₂ CH ₃
×	D	CH ₃ CH(CH ₃)CH ₂ CH ₃
		(Total for Question 9 = 1 mark)
10 Whicl	h of t	hese is likely to be the best solvent for cyclohexanol?
×	A	H ₂ O(l)
X	B	CH ₃ COCH ₃ (l)
X	C	NaCl(aq)
X	D	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ (l)
		(Total for Question 10 = 1 mark)
	est w	of a liquid to flow is linked to the strength of its intermolecular forces. hich of these liquids flows the slowest when poured.
\times		Propane-1,2,3-triol
	B	Propane-1,2-diol
×	_	
X		Pentane
		Butane
×] D	Butane
×	D	Butane (Total for Question 11 = 1 mark)
12 What	D	Butane (Total for Question 11 = 1 mark) of species forms when a bond breaks homolytically?
12 What	 D type A B 	Butane (Total for Question 11 = 1 mark) of species forms when a bond breaks homolytically? Nucleophile
12 What	 D type A B 	Butane (Total for Question 11 = 1 mark) of species forms when a bond breaks homolytically? Nucleophile Electron

		tion between $Ag^+(aq)$ ions and $Fe^{2+}(aq)$ ions, what would be the effect of the concentration of $Ag^+(aq)$ ions?
		$Ag^{+}(aq) + Fe^{2+}(aq) \rightleftharpoons Fe^{3+}(aq) + Ag(s)$
\times	A	Rate of reaction increases, yield of $Fe^{3+}(aq)$ stays the same.
\times	B	Rate of reaction increases, yield of Fe ³⁺ (aq) decreases.
\times	С	Rate of reaction decreases, yield of $Fe^{3+}(aq)$ stays the same.
\times	D	Rate of reaction increases, yield of Fe ³⁺ (aq) increases.
		(Total for Question 13 = 1 mar
14 Which	one	of these reactions is not a disproportionation reaction?
\times	A	$2H_2O_2(aq) \rightarrow O_2(g) + 2H_2O(l)$
\times	B	$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow SO_2(g) + S(s) + H_2O(l)$
\times	С	$Cl_2(aq) + 2Br^-(aq) \rightarrow 2Cl^-(aq) + Br_2(aq)$
\times	D	$2Cu^{+}(aq) \rightarrow Cu(s) + Cu^{2+}(aq)$
		(Total for Question 14 = 1 mar
15 Molec	ules	absorb IR radiation because
×		they change their polarity when they vibrate.
\times		they change their velocity when they vibrate.
\times	С	they change their magnetic field when they vibrate.
\times	D	they change their direction of rotation when they vibrate.
		(Total for Question 15 = 1 mar
16 11		
16 How n	nany	of the following molecules will absorb IR radiation?
		H_2O N_2 CH_4 O_2 CO_2
	A	Two
\times		
\propto	B	Three
		Three Four

SECTION B	
Answer ALL the questions. Write your answers in the spaces provided.	
18 This question is about the reactions and properties of some halogenoalkanes.	
(a) State the reagents and conditions needed to convert the following halogenoalkanes into the named product.	
(i) 1-bromobutane into butan-1-ol	(2)
	(2)
(ii) 1-iodobutane into butylamine	(2)
(iii) 2-chloropropane into propene	(2)
 (b) Chloroethane can be prepared by reacting ethanol with potassium chloride in the presence of concentrated sulfuric acid. Explain why a similar reaction using potassium iodide and concentrated sulfuric acid should not be used to prepare iodoethane. 	1 (2)

	Sive the systematic name of CF_2ClBr .	
(i)	Give the systematic name of $Cr_2^{-}CiDi$.	(1)
(ii)	Draw the skeletal formula of CF_3CHF_2 .	(1)
(iii)	Suggest TWO reasons to explain how these compounds can help put out fires.	(2)
*(iv)	Explain why fire retardants containing some halogenoalkanes, such as CF_2ClBr , are being phased out. Suggest a reason why the scientific community still supports the use of fire retardants containing CF_3CHF_2 .	(4)

Solutio	n and the following reaction occurred.	
	$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$	
(a) Wh	at happens to the Cu ²⁺ (aq) during this reaction? Justify your answer.	(2)
		(2)
(b) A11	of the mixture containing iodine was titrated using sodium thiosulfate solution of	of
con	centration 0.200 mol dm ⁻³ . The volume of sodium thiosulfate solution added at	51
the	end-point was 12.75 cm ³ .	
The	e equation for the reaction is	
	$I_2(aq) + 2Na_2S_2O_3(aq) \rightarrow Na_2S_4O_6(aq) + 2NaI(aq)$	
(i)	The end-point is shown most effectively using an indicator. State a suitable	
	indicator and the colour change you would expect to see at the end-point.	
		(2)
	Indicator	(2)
	Indicator	(2)
	Indicator	(2)
	Indicator Colour change at end-point	(2)
		(2)
		(2)
(ii)		
(ii)	Colour change at end-point	(2)
(ii)	Colour change at end-point	
(ii)	Colour change at end-point	

(111)	Use your answer from (ii), and the equation for the reaction between $Cu^{2+}(aq)$ and $I^{-}(aq)$, to calculate the concentration of the $Cu^{2+}(aq)$ in the original sample of solution.	
	Give your answer to three significant figures and justify why this is an appropriate level of accuracy.	(3)
(iv)	The whole of the solution containing iodine was used in one titration. Explain how this affects the reliability of your answer to (iii).	(1)
	(Total for Question 19 = 10 ma	rks)
		,

This question is about boron and nitrogen compounds.	
(a) Draw and name the shape of a boron trifluoride, BF_3 , molecule. Suggest bond angle.	the FBF
bond angle.	(3)
Name of shape	
FBF bond angle	
(b) Ammonia has the formula NH ₃ . Its HNH bond angle is less than the FBI	E bond angle
in boron trifluoride.	bolic ungie
(i) Estimate the HNH bond angle in NH_3 .	
	(1)
(ii) Explain why the HNH bond angle is less than that for FBF.	
	(1)
(iii) Name the strongest intermolecular force between BF_3 molecules.	
	(1)
(iv) Name the strongest intermolecular force between NH ₃ molecules.	
	(1)

*(d) Explain how a catalyst speeds up the rate of a reaction.	(3)
(Total for Question TOTAL FOR SECTION	

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

21 Ethanoic acid is used industrially in the manufacture of polymers and glues and also in the food industry as an acidity regulator.

It can be synthesized in the laboratory by the reaction of ethanol with excess sodium dichromate(VI) solution, acidified with concentrated sulfuric acid. Ethanol is placed in a suitable flask along with some anti-bumping beads. The concentrated sulfuric acid is then added a drop at a time. The sodium dichromate(VI) solution is then added a drop at a time causing the mixture to boil spontaneously. When the addition of the sodium dichromate(VI) solution is complete, the mixture is heated under reflux for approximately 15 minutes. The ethanoic acid formed can then be separated from the reaction mixture.

$$CH_{3}CH_{2}OH \xrightarrow[H_{2}SO_{4}]{} H_{2}SO_{4} \xrightarrow[heat, 1 atm]{} CH_{3}COOH$$

Ethanoic acid can be produced industrially by the CativaTM process. Methanol, which can be obtained from wood, is reacted with carbon monoxide in the presence of an iridium catalyst.

$$CH_{3}OH(g) + CO(g) \xrightarrow{\text{Iridium catalyst}} CH_{3}COOH(g)$$

(a) (i) Balance the half-equation for the reduction of dichromate(VI) ions.

(1)

 $Cr_2O_7^{2-} + \dots H^+ + \dots e^- \rightarrow \dots Cr^{3+} + \dots H_2O$

(ii) The half-equation for the oxidation of ethanol is

 $CH_3CH_2OH + H_2O \rightarrow CH_3COOH + 4H^+ + 4e^-$

Use this and your answer to (a)(i) to write a full equation for the overall reaction between acidified dichromate(VI) ions and ethanol. State symbols are **not** required.

(2)

	Why are the concentrated sulfuric acid and sodium dichromate(VI) added a drop at a time in the laboratory process?	(1)
(ii)	Draw a labelled diagram of the apparatus that could be used to heat the mixture under reflux.	(2)
		(3)

(ii) Suggest a method to separate pure ethanoic acid, boiling temperature 118°C, from the water.	(1)
 (d) (i) In the Cativa[™] process what effect, if any, would increasing the pressure have on the yield of ethanoic acid? Justify your answer. 	(2)
 (ii) Suggest TWO reasons why it might be difficult, or undesirable, to produce ethanoic acid in industry by scaling up the laboratory process. 	(2)

*(e) An alternative industrial process for the production of ethanoic acid is the oxidation of butane using a transition metal catalyst at 150 °C and 55–60 atm.

 $2C_4H_{10}(l) + 5O_2(g) \rightarrow 4CH_3COOH(aq) + 2H_2O(l)$

Evaluate the 'greenness' and sustainability of the two industrial processes.

Suggest TWO additional pieces of information that would help you make a more informed decision.

(6)

(Total for Question 21 = 20 marks)

TOTAL FOR SECTION C = 20 MARKS TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

							1									Τ			1							
	U (8) (18)	4.0 He	helium 2	20.2	Ne	neon 10	39.9	Ar	argon 18	83.8	Ъ.	krypton 36	131.3	Xe	xenon 54	[222]	ิพิ	radon 86		ted						
٢	~		(17)	19.0	Ŀ	fluorine 9	35.5	<u></u> נ	chlorine 17	79.9	Br	bromine 35	126.9	_	iodine 53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated	175		Lu lutetium 71	[757]		lawrencium
7	٥		(16)	16.0	0	oxygen 8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium 52	[209]	Ро	polonium 84		-116 have l nticated	172	2 4	ytterbium 70	[754]		nobelium
u	n		(15)	14.0	z	nitrogen 7	31.0	a :	phosphorus 15	74.9		arsenic 33	121.8	Sb	antimony 51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated	140	6 6	thulium 69	[756]	рм М	mendelevium
-	4		(14)	12.0	υ	carbon 6	28.1		silicon 14	72.6	e	germanium 32	118.7	Sn	tin 50	207.2	Pb	lead 82		atomic nu but not 1	147	ÈĽ	erbium 68	[753]	с Ц	fe
ſ	n		(13)	10.8	۵	boron 5	27.0	A	aluminium 13	69.7	Ga	gallium 31	114.8	Ľ	indium 49	204.4	μ	thallium 81		nents with	145	2	holmium 67	[754]	Ľ	californium einsteinium
									(12)	65.4	Zn	zinc 30	112.4	PC	cadmium 48	200.6	Hg	mercury 80			163	2	dysprosium 66	[751]	5 t	californium
בנת									(11)	63.5	Сп	copper 29	107.9	Ag	silver 47	197.0	ΡN	gold 79	[272]	ĕ	150		terbium 65	[245]	Bk [berkelium
									(10)	58.7	Ż	nickel 28	106.4	Pd	palladium 46	195.1	Pt	platinum 78	[271]	DS damstadtium 110	157		gadolinium 64	[247]	5	aurium
r Iau	_								(6)	58.9	ပိ	cobalt 27	102.9		rhodium 45	192.2	느	iridium 77	[268]	Mt meitnerium 109	152		en	[243]	¶ ∎	an
		1.0 H hydrogen	nydrogen 1						(8)	55.8		iron 26	101.1		ruthenium 44	190.2	Os	osmium 76	[277]	Hs hassium 108	150	<u></u>	sa	[242]	B	plu
									(2)	54.9	Mn	chromium manganese 24 25	[98]	Ч	molybdenum technetium 42 43	186.2	Re	rhenium 75	[264]		[147]		praseodymium leodymium promethium 59 60 61	[237]	S N	neptunium
_				mass	bol	number			(9)	52.0			95.9	Wo	molybdenum 42	183.8	>	tungsten 74	[266]	Sg seaborgium 106	7		neodymium 60	238	=	'n
			Key	relative atomic mass	atomic symbol	name atomic (proton) number			(5)	50.9	>	vanadium 23	92.9	qN	niobium 41	180.9	Ta	tantalum 73	[262]	dubnium 105		Èò	praseodymium 59	[231]	ď	protactinium
				relat	ato	atomic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium 40	178.5	Hf	hafnium 72	[261]	Rf rutherfordium 104	140	e c	cerium 58	232	F	thorium
				_					(3)	45.0	Sc	scandium 21	88.9		yttrium 39	138.9	La*	lanthanum 57	[227]	Ac* actinium 89		SS				
ſ	7		(2)	0.0	Be	beryllium 4	24.3	Mg	magnesium 12	40.1	Ca	calcium 20	87.6	Sr	strontium 38	137.3	Ba	barium 56	[226]	Ra radium 88		* Lanthanide series	* Actinide series			
•	-	3		é.9	:	lithium 3	23.0		sodium 11	39.1	¥	potassium 19	85.5	Rb	rubidium 37	132.9	ട	caesium 55	[223]	Fr francium 87		* Lanth	* Actini			

