

LEVEL 2 CERTIFICATE Further Mathematics

8360/2 – Paper 2 Calculator

Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright © 2018 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

М	Method marks are awarded for a correct method which could lead to a correct answer.
M dep	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	1420 - 5n = 0 or 5n = 1420 or $\frac{1420}{5}$	M1	oe eg 5(284 – n) = 0	
	284	A1		
	Additional Guidance			
1 (a)	$\frac{1420 - 5n}{1420 + 5n} = 0$	Zer	0	
	1420 - 5n = 0(1420 + 5n)		Zer	0
	n = 284		M1A	\1
	$1420 - 5n = 0$ and $1420 + 5n = 0$ with correct equation not selected ± 284 is A0			
	Embedded answer M1		٩0	

	-1	B1		
	Ad	ditional G	auidance	
1 (b)	$-\frac{5}{5}$			В0
	-1 $n \rightarrow \infty$			B1
	–1 → ∞			B0
	$x \rightarrow -1$ (any letter other than n)			B1

Q	Answer	Mark	Comments	
	Any pair of integer values for a and b for which $b = 12a + 26$	B2	B1 Correct equation in any for eg $\frac{b10}{a3} = 12$ or $b + 10 = 10$ or $\frac{y10}{x3} = 12$ or $y + 10 = 10$ or $b = 12a + c$ and $c = 26$ or $y = 12x + c$ and $c = 26$ or -3 + k and $-10 + 12k$ where k is a non-zero integer	2(a + 3)
	Ad	ditional G	auidance	
2	Examples of B2 responses a = -4 and $b = -22or a = -2 and b = 2or a = -1 and b = 14or a = 0 and b = 26or a = 1 and b = 38or a = 2 and b = 50or a = 3 and b = 62or a = 4 and b = 74$			B2
	a = -3 and $b = -10$ is point <i>P</i> so will no	t score B2	2 (B1 possible)	
	-3 + 1 and -10 + 12			B1
	-3 + 2 and $-10 + 24$			B1

Q	Answer	Mark	Comments	
	$-0.112 \text{ or } -\frac{14}{125}$	B1	oe fraction	
	Ad	ditional G	luidance	
3(a)	Ignore incorrect conversion between fr	action and	decimal if correct value seen	
	Ignore rounding or truncation after corr	rect value	seen	
	Answer $-\frac{3.5}{31.25}$			B0
	$2(m^{2}+1) = m + 2$ or $2m^{2}+2 = m + 2$ or $2m^{2} = m$ or $2m^{2} - m = 0$	M1	oe equation without fractions	
	$m(2m - 1) (= 0)$ or $m(1 - 2m) (= 0)$ or $\frac{1 \pm \sqrt{(-1)^2 - 4 \times 2 \times 0}}{2 \times 2}$	M1dep	oe eg $\frac{1}{4} \pm \sqrt{\frac{1}{16}}$ may be implied by both correc	t solutions
3(b)	0.5 0 or $\frac{1}{2}$ 0	A1	oe	
		ditional G	luidance	
	0.5 0 in working but only one of the	se on ans	wer line	M2A0
	Equation left in terms of \boldsymbol{p} and \boldsymbol{m}			Zero
	Answers only of 0.5 0			M2A1
	Answer only of 0.5			Zero
	Answer only of 0			Zero
	If using formula with an error seen the maximum mark is M1M0A0			
	eg $2m^2 - m = 0$ $\frac{1 \pm \sqrt{(-1)^2 - 4 \times 1}}{2 \times 2}$	×0 Ans	wers 0.5 0	M1M0A0

Q	Answer	Mark	Comments
	3rd box ticked	B1	
4	Ad	ditional G	uidance

	Line from (-4, 0) to (0, 4)	M1	mark intention	
	Line from (0, 4) to (2, –2)	M1	lines do not have to be straigh pass through all integer points	
	Line from (2, –2) to (5, –2)	M1	only condone the first instance that extends beyond the giver	e of a line
	Straight line from $(-4, 0)$ to $(0, 4)$ and straight line from $(0, 4)$ to $(2, -2)$ and straight line from $(2, -2)$ to $(5, -2)$	A1	all straight lines must be the c with no other lines graph must be accurate SC3 (-4, 0) and (-3, 1) and (- and (-1, 3) and (0, 4) and (1, and (3, -2) and (4, -2) and (5 (any other points plotted must ones for the graph) SC2 (-4, 0) and (0, 4) and (2, (5, -2) plotted (any other poin must be correct ones for the g	-2, 2) 1) and (2, -2) , -2) plotted : be correct -2) and ts plotted
	Additional Guidance			
5	(crosses do not have to be shown)			M3A1
	Dashed or dotted lines can score up to	M3A0		
	Points may be implied by a correct line			
	M mark examples			
	eg1 2 correct lines and 1 extended line (but otherwise correct)			M3A0
	eg2 1 correct line and 2 extended lines	s (but othe	erwise correct)	M2A0
	eg3 3 extended lines (but otherwise co	orrect)		M1A0

Q	Answer	Mark	Comments	
	$f(x) \ge -7 \text{ or } -7 \leqslant f(x)$	B1		
	Additional Guidance			
	f(x) may be replaced by y or f or fx or g(x) or g or gx or $x^2 - 7$ $x \ge -7$ B0			
6(a)				
	≥ - 7			
	$\label{eq:condone} \mbox{Condone} \ -7 \leqslant f(x) < \infty \ \mbox{or} \ -7 \leqslant f(x) \leqslant \infty \ \mbox{or} \ -7 \leqslant f(x) \leqslant \ \mbox{or} \ \ -7 \leqslant f(x) \leqslant \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			
	[−7, ∞) or [−7, ∞]			

	$-11 \leqslant g(x) \leqslant 13$ or $13 \geqslant g(x) \geqslant -11$	B2	B1 $g(x) \ge -11$ or $g(x) \le 13$ on their or embedded within an inequality or -11 < g(x) < 13 or $[-11, 13]$ or $-11 \le x \le 13$	r own
	Ad	ditional G	Guidance	
	g(x) may be replaced by y or g or gx or $f(x)$ or f or fx or $1 - 3x$ in B2 or B1 responses			
	$g(x) \ge -11 g(x) \le 13$ $-11 \text{ to } 13 \text{ inclusive ('inclusive' must be seen)}$ Do not allow if 24 also seen			
6(b)				
	B1 may be seen with an incorrect ineq eg1 $-11 < g(x) \le 13$ eg2 $-11 \le g(x) < 13$ eg3 $0 < g(x) \le 13$	uality		B1 B1 B1
	eg4 $13 \le g(x) \ge -11$ B1			B0
	$-11 < x \le 13 \text{ or } -11 \le x < 13 \text{ or } -11 < x < 13$ B0			
	{-11, -10, -9, 0, 1, 2, 3,,	12, 13}		B0

Q	Answer	Mark	Comments	;
	$2x^2 - 14$	M1		
	$2x^{2} + 3x - 15 (= 0)$ or $-2x^{2} - 3x + 15 (= 0)$ or $2x^{2} + 3x = 15$ or $-2x^{2} - 3x = -15$	A1		
	$\frac{-3\pm\sqrt{3^2-4\times2\times-15}}{2\times2}$ or $\frac{-3\pm\sqrt{9+120}}{4}$ or $\frac{-3\pm\sqrt{129}}{4}$	M1	oe eg $-\frac{3}{4} \pm \sqrt{\frac{15}{2} + \left(\frac{3}{4}\right)^2}$ correct method to solve their quadratic implied by correct solutions their 3-term quadratic to at l	to
	2.089 –3.589	A1ft	correct or ft M1A0M1 or M0 must both be rounded to 3 c	
6(c)	Additional Guidance			
	2nd M1 Allow correct factorisation of th	neir 3-term	n quadratic if it does factorise	
	2nd M1 Allow correct use of formula ev	ven if disc	riminant is negative	
	Two 'correct' solutions to at least 2 dec eg 2.09 and –3.59	imal place	es implies M1A1M1	M1A1M1A0
	2.089 and –3.589 in working but only c	one on ans	swer line	M1A1M1A0
	Answers only 2.089 –3.589			M1A1M1A1
	Answer only 2.089			Zero
	Answer only –3.589			Zero
	$2x^2 - 7$ from incorrect expansion leadir	ng to 1.386	6 –2.886	M0A0M1A1ft
	x ² – 14 from incorrect expansion leadir	ng to 2.653	3 –5.653	M0A0M1A1ft
	$2x^2 - 14$ and $2x^2 + 3x - 13$ (= 0) M1A0 Answers 1.908 -3.408			

Q	Answer	Mark	Comments
7	$\frac{1}{2} \times (8 + 4) \times a \ (= 63)$ or $\frac{1}{2} \times 12 \times a \ (= 63)$ or $6a \ (= 63)$ or $63 \div 6$	M1	any letter oe eg 12a = 126 or $\frac{1}{2} \times 3 \times a + 4 \times a + \frac{1}{2} \times 1 \times a$ (= 63)
	10.5 or $10\frac{1}{2}$ or $\frac{21}{2}$	A1	
	Ad	ditional G	Guidance
	M1 is for a full area calculation (= 63)		

Q	Answer	Mark	Comments
	Alternative method 1		
	(x-coordinate of <i>P</i> =) 5.5 and (y-coordinate of <i>P</i> =) 2.25	B2	oe may be seen on diagram B1 (x-coordinate of $P =$) 5.5 or (y-coordinate of $P =$) 2.25 or x-coordinate of $P = 2.25$ and y-coordinate of $P = 5.5$
8	$(9 - \text{their } 5.5)^2 + (12 - \text{their } 2.25)^2$ or $3.5^2 + 9.75^2$ or $12.25 + 95.06(25)$ or $12.25 + 95.063$ or $107.3(125)$ or 107.313	M1	oe eg $\sqrt{3.5^2 + 9.75^2}$ or $\frac{1717}{16}$ 1 < their 5.5 < 7 1 < their 2.25 < 6
	10.36	A1ft	correct or ft their 5.5 and/or their 2.25 must be rounded to 4 sig figs
	Alternative method 2 Uses $AC = 10$	$BC = \sqrt{12}$	$\overline{25}$ or $5\sqrt{5}$ or 11.18 and $AB = \sqrt{61}$ or 7.81
	$\cos^{-1} \frac{10^2 + 7.81^2 - 11.18^2}{2 \times 10 \times 7.81}$ or [76.67, 76.71]	M1	oe eg cos ⁻¹ 0.23(0) or cos ⁻¹ 0.231 may be on diagram angle <i>BAC</i>
	$(0.75 \times 7.81)^2 + 10^2$ - 2 × (0.75 × 7.81) × 10 × cos their [76.67, 76.71]	M1dep	
	[107.3, 107.4]	A1	
	10.36	A1	

Q	Answer	Mark	Comments	
	Alternative method 3 Uses AC = 10	$BC = \sqrt{12}$	$25 \text{ or } 5\sqrt{5} \text{ or } 11.18 \text{ and } AB =$	√61 or 7.81
	$\cos^{-1} \frac{7.81^{2} + 11.18^{2} - 10^{2}}{2 \times 7.81 \times 11.18}$ or [60.49, 60.66]	M1	oe eg cos ⁻¹ [0.49, 0.4925] may be on diagram angle <i>ABC</i>	
	$(0.25 \times 7.81)^2 + 11.18^2$ - 2 × (0.25 × 7.81) × 11.18 × cos their [60.49, 60.66]	M1dep		
8	[107.3, 107.4]	A1		
	10.36	A1		
	Additional Guidance			
	If 5.5 is from gradient <i>BC</i>			B0
	Alt 1 P (4.5, 3.75)			B0
	$(9-4.5)^2 + (12-3.75)^2$			M1
	9.397			A1ft

Q	Answer	Mark	Comments	
	$\frac{2x^{6}}{3} \text{ or } \frac{2}{3}x^{6}$ or $\frac{15x}{3} \text{ or } 5x$	M1	implied by $\frac{2x^6 + a}{3}$ or $\frac{b + 15x}{3}$ a can be numerical or algebrain b can be numerical or algebrain allow 0.66 or 0.67 for $\frac{2}{3}$	с
9	$\begin{vmatrix} 6 \times \frac{2x}{3} & \text{or } \frac{12x}{3} & \text{or } 4x^5 \\ \text{or} & \\ 15 & \text{or } 5 \end{vmatrix}$ M1dep implied by $\frac{6 \times 2x^5 + 3}{3}$		correct differentiation of one c implied by $\frac{6 \times 2x^5 + a}{3}$ or $\frac{b + 3}{3}$	
	$4x^{5} + 5 = 133$ or $4x^{5} = 128$ or $x^{5} = 32$ or $\sqrt[5]{32}$	A1	oe both correct terms differentiate simplified correctly and equate	
	2	A1		
	Additional Guidance			
	$\frac{14x^6 + 30x}{3}$			Zero

Q	Answer	Mark	Comments
	$ \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} $	M1	oe implied by a correct equation
	a - 3b = 1	A1	oe
	2a - 9b = 4	A1	may be implied by correct answers
10	Correct elimination of a variable from their 2 linear equations with both equations having the same two variables	M1	eg $3a - 2a = 3 - 4$ or $-6b9b = 2 - 4$
	$a = -1 \qquad b = -\frac{2}{3}$	A1	must be exact values

Additional guidance continues on the next page

Q	Answer	Mark	Comments		
	Ad	ditional G	uidance		
	$\begin{pmatrix} a-3b\\ 2a-9b \end{pmatrix} = \begin{pmatrix} 1\\ 4 \end{pmatrix}$ implies M1 but does	not imply a	iny correct equations		
	If the same method is used for both a a eliminates a variable), mark the attempt				
	Ignore commas and lines within matric	es			
	Allow missing brackets if arrays are co	rrect dime	nsions		
	Answers only $a = -1$ and $b = -\frac{2}{3}$			5 marks	
	Allow use of $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$ as a misread			M1A0A0 M1A1ft	
10	If solution $a = -1$ and $b = \frac{2}{3}$			(A1ft after misread)	
	Transposing $\begin{pmatrix} 1 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 4 \end{pmatrix}$ is not a m	isread (coi	Ild still score 2nd M1)		
	$ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{ followed by } a - 3b = 1 \text{ and } 2a - 9b = 4 $ (could still score 2nd M1)				
	$ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{ with only one of } a - 3b = 1 \text{ and } 2a - 9b = 4 $			M1A1A0	
	(could still score 2nd M1)				
	$ \begin{pmatrix} 1 \\ -3 \end{pmatrix} \begin{pmatrix} a & b \\ 2a & 3b \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} $ with neither equation correct #				
	(could still score 2nd M1)				

Q	Answer	Mark	Comments	
	Alternative method 1 expands $(x + 2)(x + 3)$ first			
	$x^2 + 3x + 2x + 6$ or $x^2 + 5x + 6$	M1	oe must have a term in x^2 allow one error but no omissions or extras implied by $x^2 + 5x + k$ or $ax^2 + 5x + 6$	
	$x^3 + 5x^2 + 6x + 4x^2 + 20x + 24$	M1dep	oe eg $x^3 + 3x^2 + 2x^2 + 6x + 4x^2 + 12x + 8x + 24$ allow one further error but no omissions or extras	
11	$x^3 + 9x^2 + 26x + 24$	A1		
	Alternative method 2 expands $(x + 3)(x + 4)$ first			
	$x^{2} + 3x + 4x + 12$ or $x^{2} + 7x + 12$	M1	oe must have a term in x^2 allow one error but no omissions or extras implied by $x^2 + 7x + k$ or $ax^2 + 7x + 12$	
	$x^3 + 7x^2 + 12x + 2x^2 + 14x + 24$	M1dep	oe eg $x^3 + 3x^2 + 4x^2 + 12x + 2x^2 + 6x + 8x + 24$ allow one further error but no omissions or extras	
	$x^3 + 9x^2 + 26x + 24$	A1		

Q	Answer	Mark	Comments		
	Alternative method 3 expands (x + 2	2)(x + 4) fii	rst		
	$x^{2} + 4x + 2x + 8$ or $x^{2} + 6x + 8$	M1	oe must have a term in x^2 allow one error but no omissio implied by $x^2 + 6x + k$ or ax^2 -		
	Midep		$x^{3} + 4x^{2} + 2x^{2} + 8x + 3x^{2} + 12$ allow one further error but no	-	
11	$x^3 + 9x^2 + 26x + 24$	A1			
	Additional Guidance				
	For M marks terms may be seen in a grid (+ signs not needed)				
	Correct answer followed by further work			M2A0	
	Ignore further simplification after 4 terr eg Alt 1 $x^2 + 3x + 2x + 6 = x^2 + 6x + (x^2 + 6x + 6)(x + 4) \rightarrow x^3 + 4x^2 + 6x^2 +$	6	+ 18 (error)	M1 M1depA0	
	Second M1 Must be the product of a two term bracket and a three or four term bracket				
	Missing brackets may be recovered				

Q	Answer	Mark	Comments	
	Valid common denominator with at least one numerator correct	M1	eg $\frac{7x}{9x^2}$ and $\frac{a}{9x^2}$ or $\frac{7x+a}{9x^2}$ or $\frac{b}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators seen as products a can be numerical or algebra b can be numerical or algebra	aic
12(a)	Valid common denominator with both numerators correct	M1dep	$\frac{7x}{9x^2}$ and $\frac{6}{9x^2}$ or $\frac{7 \times 3x^2}{9x \times 3x^2}$ and $\frac{2 \times 9x}{9x \times 3x^2}$ numerators and denominators seen as products	s may be
	$\frac{7x+6}{9x^2} \text{ or } \frac{7x+6}{(3x)^2}$ with no further work	A1		
	Ad	ditional G	uidance	
	$\frac{21x^2 + 18x}{27x^3} \text{ or } \frac{21x + 18}{27x^2} \text{ or } \frac{7x^2 + 6x}{9x^3}$			M2A0
	$\frac{7x^{-1} + 6x^{-2}}{9}$			M2A0
	$7x + 6 / 9x^2$			M2A0

Q	Answer	Mark	Comments	
Q 12(b)	AnswerChanges division to multiplication and inverts to $\frac{3x+12}{x^2}$ $(3x + 12 =) 3(x + 4)$ Correct expression written as a single fraction or a product must have 	Mark M1 M1	Commentsmay be impliedmay be implied by final A1eg $\frac{3x(x+2)(x+4)}{x+4}$ or $\frac{(3x^2-1)^2}{x+4}$ or $\frac{x}{x+4} \times \frac{x+2}{1} \times 3(x+4)$ or $\frac{x}{x+4} \times 3(x+2)(x+4)$ or $\frac{3x^4(x+2)}{x^3}$ or $x^4 \times \frac{x+2}{x} \times \frac{x+2}{x}$ or $\frac{3x^4(x+2)}{x^3} \times 3x^4$ or $\frac{3x^3(x+2)}{x^2}$ or $\frac{3x^2(x+2)}{x^2}$ or $\frac{3x^2(x+2)}{x^2}$	
			or $\frac{3x(x+2)}{1}$ or $x \times (x+2) \times 3$ or $3x(x+2)$	
	$3x^2 + 6x$	A1	SC2 $\frac{x(x+2)(3x+12)}{x+4}$	
	Ad	ditional G	Guidance	
	The list of examples in the first A1 is not exhaustive			
	$3x^2 + 6x$ with no incorrect working			4 marks

Q	Answer	Mark	Comments	
		1		
	1	B1	allow in words	
13(a)	Ad	ditional G	uidance	

	0	B1	allow in words eg none or zero
13(b)	Additional Guidance		

	(0, 1) (90, 0) (270, 0) with no other points	B2	B1 two answers, both correct or three answers, two correct or four answers, three correct	
13(c)	Additional Guidance			
	Condone 0, 1 for (0, 1) etc			
	0, 90, 270			B0
	(1, 0) (0, 90) (0, 270)			B0

Q	Answer	Mark	Comments	
	6pq ² r (2q - 3r + 4)	B2	B1 correct factorised expression common factor involving at leavariables eg pq($12q^2r - 18qr^2 + 24qr$) or $2q^2r$ ($6pq - 9pr + 12p$) or common factor $6pq^2r$ with two three terms in the bracket corr	ast two
	$eg \ 6pq^2r \ (2q-3r+4p)$			
14(a)	Ad	ditional G	luidance	
	B2 answer followed by further work			B1
	$6 pq^2 r \; (2q-3r+4)$ in working with $6 qr$	0 ² r (2q – 31	r + 4) on answer line	B1
	B1 answer followed by further work			B1
	$2q^2r$ (6pq – 9pr + 12p) in working with	2p ² r (6pq	– 9pr + 12p) on answer line	B1
	Use of multiplication signs scores a maximum of B1			
	$qpq(12qr - 18r^2 + 24r)$			B1
	6 pqrq (2q - 3r + 4)			B1

Q	Answer	Mark	Comments		
	Correct factorised expression with a common factor	M1	eg (y + 3) $[6(y + 3)^4 + 4(y + 3)^4]$ or 2 $[3(y + 3)^5 + 2(y + 3)^4]$ or 2 $(y + 3)^2 [3(y + 3)^3 + 2(y + 3)^4]$	-	
	$2(y+3)^{4} [3(y+3)+2]$ or $2(y+3)^{4} (3y+9+2)$ or $(y+3)^{4} [6(y+3)+4]$ or $(y+3)^{4} (6y+18+4)$ or $(y+3)^{4} (6y+22)$	A1			
	$2(y+3)^4 (3y+11)$	A1			
14(b)	Additional Guidance				
	Use of multiplication signs scores a ma	aximum of	M1A1A0		
	Any combination of bracket shape may	/ be used			
	Correct answer followed by further wor	ĸ		M1A1A0	
Incorrect notation eg $(y+3)^4 2(3y+11)$			M1A1A0		
	$(2)(y+3)^4 (3y+11) \text{ or } (2(y+3)^4)(3y+11)$			M1A1A1	
Allow substitution eg n = $(y + 3)$ for M1A1 but must revert to $(y + 3)$ for mark					
	Missing brackets must be recovered eg $(y + 3)^4 6y + 22$ with M1 not seen			Zero	

Q	Answer	Mark	Comments	
	3(4 + 5x)(4 - 5x) or $3(-4 - 5x)(5x - 4)$ or $-3(4 + 5x)(5x - 4)$ or $-3(-4 - 5x)(4 - 5x)$	B2 ditional 0	B1 Partial factorisation eg $3(16 - 25x^2)$ or $-3(25x^2 - 1)$ or $(12 + 15x)(4 - 5x)$ or $(12 - 1)$	
	Brackets in either order for B2 or B1			
	$-(75x^2 - 48)$			B0
	(-5x + 4) is equivalent to $(4 - 5x)$ etc			
14(c)	Incorrect notation eg $(4 + 5x)3(4 - 5x)$			B1
	Use of surds eg $(\sqrt{48} + \sqrt{75} x)(\sqrt{48} - \sqrt{75} x)$ or $(4\sqrt{3})$	$(4\sqrt{3}-5\sqrt{3} x)$	B1	
	Use of multiplication signs scores a mage $3 \times (4 + 5x)(4 - 5x)$	B1		
	B2 answer followed by further work		B1	
	B1 answer followed by further work			B1
	Missing brackets must be recovered	eg 3 × 16	– 25x ²	В0

Q	Answer	Mark	Comments	
	$x^4 - 9x^2$	M1		
	4x ³ or (–)2 × 9x or (–)18x	M1	differentiates at least one of their term their term must be a function of x after attempt to expand brackets $4x^3 - 18x$ implies M2	-
	$4 \times (-2)^3 - 18 \times -2$ or $4 \times -8 - 18 \times -2$ or $-32 + 36$	M1dep	oe dep on 2nd M1 substitutes –2 into their $4x^3 - 18x$ their $4x^3 - 18x$ must be two terms, eac function of x	ch a
	4	A1		
	Ad	Iditional G	auidance	
	Allow recovery of brackets			
	4×-2^3 is allowed for $4 \times (-2)^3$			
15	3rd M can still be awarded even if further substitution seen eg1 $4x^3 - 18x$ $4 \times (-2)^3 - 18 \times -2$ and $4^4 - 9 \times 4^2 = 112$ Answer 112 eg2 $4x^3 - 18x$ $4 \times (-2)^3 - 18 \times -2 = 4$ and $4 \times 4^3 - 18 \times 4 = 184$ Answer 184			3) 3)
	Only substituting x = -2 into second de M1M1M0A0	erivative ca	an score a maximum of	
	4 followed by answer y = 4		M3A	A 1
	4 followed by answer $y = 4x$		M3A	40
	Do not regard substitution of $x = 2$ as a			
	Beware that finding the gradient of the line through $(-2, -20)$ and $(3, 0)$ gives answer 4			0
	Beware that (–)18x may come from wrong method			
	eg1 $2x(2x - 9) = 4x^2 - 18x$		Zer	
	$eg2 \ 2x(x^2 - 9) = 2x^3 - 18x$		Zer	0

Q	Answer	Mark	Comments
	Alternative method 1		
	2(2-5x) + 3(3x-1) or $4 - 10x$ or $9x - 3$	M1	
	4 - 10x + 9x - 3 = 1 - x	M1dep	
	$(1-x)^2 = 1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	
	Alternative method 2		
16	$4(2-5x)^{2} + 6(2-5x)(3x-1) + 6(2-5x)(3x-1) + 9(3x-1)^{2}$	M1	oe allow + 12(2 - 5x)(3x - 1) for + 6(2 - 5x)(3x - 1) + 6(2 - 5x)(3x - 1)
	$\begin{array}{r} 4(4-10x-10x+25x^2)\\ +\ 6(6x-2-15x^2+5x)\\ +\ 6(6x-2-15x^2+5x)\\ +\ 9(9x^2-3x-3x+1)\\ =\ 16-40x-40x+100x^2+36x-12\\ -\ 90x^2+30x+36x-12-90x^2\\ +\ 30x+81x^2-27x-27x+9 \end{array}$	M1dep	oe must see expansions must see working for 1st M1 allow + $12(6x - 2 - 15x^2 + 5x)$ for + $6(6x - 2 - 15x^2 + 5x)$ + $6(6x - 2 - 15x^2 + 5x)$
	$1 - 2x + x^2$	A1	must see working for M2
	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1	

Q	Answer	Mark	Comments	
	Alternative method 3			
	2(2-5x) + 3(3x-1) or $4 - 10x$ or $9x - 3$	M1	oe	
	$(4 - 10x + 9x - 3)^{2}$ = 16 - 40x + 36x - 12 - 40x + 100x ² - 90x ² + 30x + 36x - 90x ² + 81x ² - 27x - 12 + 30x - 27x + 9	M1dep	oe must see expansions	
16	$1 - 2x + x^2$	A1	must see working for M2	
10	$2 - 5x + 3x - 1 + x^2 = 1 - 2x + x^2$	B1		
	Additional Guidance			
	Allow working down both sides of an equation/identity			
	M2A1 is for working on $(2A + 3B)^2$			
	B1 is for working on $A + B + C$			
	$1 - 2x + x^2$ with working for M2 seen a	nd 2 – 5x	$+3x - 1 + x^2 = x^2 - 2x + 1$	4 marks
	$1 - x^2 = 1 - 2x + x^2$ (do not allow missing brackets even if recovered)			

Q	Answer	Mark	Comments	
17(a)	$(-5)^2 + 2^2 = 29$	B1	oe involving use of -5 and 2 eg $(-5 - 0)^2 + (2 - 0)^2 = 29$ or $(05)^2 + (0 - 2)^2 = 29$ or $\sqrt{(-5)^2 + 2^2} = \sqrt{29}$ or $29 - (-5)^2 = 2^2$ or $29 - 2^2 = (-5)^2$ or $\sqrt{29 - (-5)^2} = 2$ or $\sqrt{29 - (-5)^2} = 2$	
	Ac	Iditional C	auidance	
	25 + 4 = 29			B0
	$-5^2 + 2^2 = 29$			B0
	Allow 29 to be written as $\sqrt{29}^2$			

Q	Answer	Mark	Comments
	Alternative method 1 Using gradien	ts	
	(gradient OP =) $\frac{2-0}{-5-0}$ or $-\frac{2}{5}$ or -0.4	M1	oe may be implied eg y = $-\frac{2}{5}x$ or gradient of tangent = $\frac{5}{2}$ (with gradient OP not seen)
	(gradient tangent =) $\frac{-1}{\text{their} - \frac{2}{5}}$ or $\frac{5}{2}$ or 2.5	M1	oe correct or ft their $-\frac{2}{5}$
17(b)	$y-2 = \text{their } \frac{5}{2} (x5)$ or $0-2 = \text{their } \frac{5}{2} (x5)$ or $2 = \text{their } \frac{5}{2} \times -5 + c$	M1dep	oe dep on 2nd M1 equation of their tangent with or without substitution of $y = 0$ implied by $y = \frac{5}{2}x + \frac{29}{2}$ oe or $0 = \frac{5}{2}x + \frac{29}{2}$ oe
	$-\frac{29}{5}$ or -5.8	A1	oe allow $\left(-\frac{29}{5}, 0\right)$ SC2 answer -10 (grad tangent = $\frac{2}{5}$) SC2 answer $-\frac{21}{5}$ or -4.2 oe (grad tangent = $-\frac{5}{2}$)

Q	Answer	Mark	Comments		
	$-5 - 3 < 4x \le 13 - 3$ or $-8 < 4x \le 10$ or $-1.25 < x + 0.75 \le 3.25$ or $x \le 2.5$ or $x > -2$ or $x \le 2$ or $x \ge -1$	M1	could be embedded eg –2 \leqslant x	≤ 2.5	
18(a)	$\frac{\text{their} - 8}{4} < x \leqslant \frac{\text{their 10}}{4}$ or their -1.25 - 0.75 < x \leqslant their 3.25 - 0.75 or -2 < x \leqslant 2.5 or -2 < x \leqslant 2.5 or -1 \leqslant x \leqslant 2.5 or -1 \leqslant x \leqslant 2.5 or -1 \leqslant x \leqslant 2 or x \leqslant 2.5 and x > -2 or x \leqslant 2.5 and x > -2 or x \leqslant 2.5 and x > -1 or x \leqslant 2 and x > -1	M1dep	oe eg (- 2, 2.5] or [-1, 2.5]		
	-1 0 1 2 with no incorrect working	A1			
	Additional Guidance				
	Answer only -1 0 1 2			M2A1	
	Answer only -1 1 2			Zero	
	x = 2.5 and $x = -2$ (from solving equations) followed by -1 0 1 2			M2A1	
	x = 2.5 and $x = -2$ (from solving equat	ions)		Zero	
	-1 0 1 2 with no incorrect workin	g and a co	prrect inequality on answer line	M2A1	
	-1 0 1 2 in working but -1 1	2 on ans	wer line	M2A0	
	Ignore repeated integers eg Answer o	nly –1 0	1 1 2 2	M2A1	

Q	Answer	Mark	Comments	
	$(x-4)(x-7)$ or $\frac{11\pm\sqrt{(-11)^2-4\times1\times28}}{2\times1}$	M1	oe	
	or $\frac{11}{2} \pm \sqrt{\frac{9}{4}}$ Identifies 4 and 7	A1	may be on a graph or implied inequality using 4 and 7	by an
18(b)	x < 4 x > 7	A1	do not allow incorrect notation eg $4 > x > 7$	1
	Additional Guidance			
	x < 4 with M1 not scored			Zero
	x > 7 with M1 not scored			Zero
	Both $x < 4$ and $x > 7$ in working but only one on answer line			M1A1A0
	x < 4 and x > 7			M1A2
	x < 4 or x > 7	x < 4 or x > 7		

Q	Answer	Mark	Comments		
	Alternative method 1 C(BA)				
	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and indication that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix	В5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix B3 (reflection in y = -x) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and (reflection in x-axis) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ B2 Any two of the above B1 Any one of the above		
19	Alternative method 2 (CB)A				
	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and indication that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix	В5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is the identity matrix B3 (reflection in y = -x) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and (reflection in x-axis) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ B2 Any two of the above B1 Any one of the above		

Mark scheme continues on the next page

•	A 11	Mark	Ocromonto
Q	Answer	Mark	Comments
	Alternative method 3 transforms a g	eneral poi	nt
	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ -x \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -y \\ -x \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ -y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ and indication that $\begin{pmatrix} x \\ y \end{pmatrix}$ has mapped to itself	В5	for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that $\begin{pmatrix} x \\ y \end{pmatrix}$ has mapped to itself B3 (reflection in $y = -x$) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and (reflection in x-axis) $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ B2 Any two of the above B1 Any one of the above
	Alternative method 4 transforms the	unit squa	re
19	$ \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix} and \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} and \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} and indication that unit square has mapped to itself$	B5	columns in 2 by 4 matrices can be in any order for B5, products must be seen in correct order and results of products must be correct B4 a B5 response with no indication that unit square has mapped to itself B3 (reflection in $y = -x$) $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and (rotation) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ B2 Any two of the above B1 Any one of the above

Additional guidance continues on the next page

Q	Answer	Mark	Comments		
		Additional Guidance			
	For B3, B2 and B1 the matrices must r Must use matrix multiplication Ignore commas and lines within matric				
19	Examples of indication Alt 1 or 2 $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$ or $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ which	n is the ider	ntity matrix		
	Alt 4 $\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$ which is the same as the original				
	of the solution				
	Alt 3 $\begin{pmatrix} x \\ y \end{pmatrix}$ must be algebraic				

Q	Answer	Mark	Comments		
	Alternative method 1				
	$12^{2} + \left(\frac{10}{2}\right)^{2} \text{ or } 12^{2} + 5^{2}$ or 144 + 25 or 169	M1	oe RM ²		
20(a)	√their 169 or 13	M1dep	oe <i>RM</i> may be seen on diagram 13 implies M2		
	$\tan x = \frac{7}{\text{their 13}}$	M1dep	any letter oe eg tan ⁻¹ $\frac{7}{\text{their 13}}$		
	28(.3)	A1			

Q	Answer	Mark	Comments	
	Alternative method 2			
	$12^{2} + \left(\frac{10}{2}\right)^{2} + 7^{2}$ or $12^{2} + 5^{2} + 7^{2}$ or $144 + 25 + 49$ or 218	M1	oe UM ²	
	√their 218 or [14.76, 14.8]	M1dep	oe <i>UM</i> may be seen on diagram [14.76, 14.8] implies M2	
20(a)	sin x = $\frac{7}{\text{their [14.76, 14.8]}}$ or cos x = $\frac{\sqrt{12^2 + 5^2}}{\text{their [14.76, 14.8]}}$	M1dep	any letter oe eg sin $^{-1} \frac{7}{\text{their } [14.76, 14.8]}$ or sin x = $\frac{\sin 90}{\text{their } [14.76, 14.8]} \times 7$ or cos x = $\frac{12^2 + 5^2 + \text{their } [14.76, 14.8]^2 - 7^2}{2 \times \sqrt{12^2 + 5^2} \times \text{their } [14.76, 14.8]}$	
	28(.3)	A1		
	Additional Guidance			
	Allow $\tan = \frac{7}{\text{their } 13}$ etc			
	Do not allow tan $\frac{7}{\text{their 13}}$ etc unless recovered			
	If using sine or cosine rule, must rearrange to make sin x or cos x the subject			
	Allow up to M1M1dep from either alt 1 or alt 2 even if not subsequently used			

Q	Answer	Mark	Comments
20(b)	$\tan \alpha = \frac{10 \div 2}{12}$ or $\tan \alpha = \frac{5}{12}$ or $\sin \alpha = \frac{10 \div 2}{\text{their 13}}$ or $\sin \alpha = \frac{5}{\text{their 13}}$ or $\cos \alpha = \frac{12}{\text{their 13}}$	M1	any letter oe eg tan $^{-1}\frac{5}{12}$ their 13 = <i>RM</i> from (a) may be seen on diagram oe eg sin $\alpha = \frac{\sin 90}{\sqrt{12^2 + 5^2}} \times 5$ or sin $\alpha = \frac{\sin 90}{\text{their } 13} \times 5$ or cos $\alpha = \frac{12^2 + 5^2 + 12^2 - 5^2}{2 \times 12 \times \sqrt{12^2 + 5^2}}$ or cos $\alpha = \frac{\text{their } 13^2 + 12^2 - 5^2}{2 \times 12 \times \text{their } 13}$
	22.6	A1ft	allow 23 with working correct or ft ft answers correct to at least 1 dp
	Ad	ditional G	Guidance
	Allow $\tan = \frac{5}{12}$ etc		
	Do not allow tan $\frac{5}{12}$ etc unless recove		
	If using sine or cosine rule, must rearra	ake sin α or cos α the subject	

Q	Answer	Mark	Comments	
	(-1, 3) or (2, 1) (-1, 3) max(imum)	M1 A1		
	(2, 1) (point of) inflection	A1	SC1 (3, -1) max(imum) and (1, 2) (point of) inflection	
21	Additional Guidance			
	One correct point and nature	M1A1		
	Ignore reference to 'stationary points' or 'turning points' or 'local'			
	Condone p o i for point of inflection			

Q	Answer	Mark	Comments		
	Alternative method 1				
22(a)	Divides trigonometric expression by cos x or rearranges equation	M1	eg $8 \frac{\cos x}{\cos x} + 5 \frac{\sin x}{\cos x}$ or $8 + 5 \frac{\sin x}{\cos x}$ or $8 \cos x = -5 \sin x$ or $8 \cos x = -5 \sin x$ or $\frac{\cos x}{\sin x} = -\frac{5}{8}$ or $8 \frac{\cos x}{\cos x} = -5 \frac{\sin x}{\cos x}$ or $5 \tan x = -8$		
	$\tan x = -\frac{8}{5}$ or $\tan x = -1.6$ or $\cos x = -\frac{5}{\sqrt{89}}$ or -57.9 or -58	A1	oe eg tan ⁻¹ –1.6 may be implied by final answer		
	122.(0) with no other angle	A1			

Q	Answer	Mark	Comments		
	Alternative method 2				
	Divides trigonometric expression by cos x or rearranges equation	M1	eg $8 \frac{\cos x}{\cos x} + 5 \frac{\sin x}{\cos x}$ or $8 + 5 \frac{\sin x}{\cos x}$ or $8 \cos x = -5 \sin x$ or $8 \cos x = -5 \sin x$ or $\frac{\cos x}{\sin x} = -\frac{5}{8}$ or $8 \frac{\cos x}{\cos x} = -5 \frac{\sin x}{\cos x}$ or $5 \tan x = -8$		
	sin x = $\frac{8}{\sqrt{89}}$ or 57.9 or 58	A1	oe eg sin ⁻¹ $\frac{8}{\sqrt{89}}$ may be implied by final answe	ər	
22(a)	122.(0) with no other angle	A1			
	Additional Guidance				
	Allow division of expression by kcos x eg (k = 8) 1 + $\frac{5 \sin x}{8 \cos x}$			M1	
	Answer only 122.(0)			M1A2	
	Embedded answer 122.(0)			M1A1A0	
	Answer only 121.9			Zero	
	If working seen, use the alt method for the working seen				
	Answer only –58 (BOD alt 1)			M1A1A0	
	Answer only 58 (BOD alt 2)			M1A1A0	
	Allow cos for cos x etc				
	Allow c for cos x etc				

Q	Answer	Mark	Comments		
	Alternative method 1				
	$6(1 - \cos^{2} x) + 4 \cos^{2} x$ or 6 - 6 cos ² x + 4 cos ² x or 2(1 - cos ² x) + 4 or 6 - 2 cos ² x	M1	oe expression in terms of cos	² x	
	A = 6 and B = -2 with no incorrect working	A1			
22(b)	Alternative method 2				
	A $sin^2 x + A cos^2 x + B cos^2 x$ and A = 6 and A + B = 4	M1			
	A = 6 and B = -2 with no incorrect working	A1			
		Additional G	Guidance		
	A = 6 and B = -2 with no working			M1A1	

Q	Answer	Mark	Comments	
	$(a^2 + 3) \times k \text{ or } ka^2 + 3k$	M1	oe eg b = $ka^2 + 3k$ may be seen on diagram	
	$(ak)^2 + 3 \text{ or } a^2k^2 + 3$	M1	oe eg b = $a^2k^2 + 3$ may be seen on diagram	
	$ka^2 + 3k = a^2k^2 + 3$	M1dep	oe equates and expands brackets correctly dep on M2 may include –b on each side	
23	$\begin{aligned} a^{2}(k - k^{2}) &= 3 - 3k \\ \text{or } ka^{2}(1 - k) &= 3 - 3k \\ \text{or } ka^{2} - a^{2}k^{2} &= 3(1 - k) \\ \text{or } a^{2}(k - k^{2}) &= 3(1 - k) \\ \text{or } ka^{2}(1 - k) &= 3(1 - k) \\ \text{or } ka^{2}(k - k) &= 3k - 3 \\ \text{or } ka^{2}(k - 1) &= 3k - 3 \\ \text{or } k^{2}a^{2} - ka^{2} &= 3(k - 1) \\ \text{or } a^{2}(k^{2} - k) &= 3(k - 1) \\ \text{or } ka^{2}(k - 1) &= 3(k - 1) \end{aligned}$	M1dep	oe eg (a ² =) $\frac{3-3k}{k-k^2}$ or (a =) (±) $\sqrt{\frac{3-3k}{k-k^2}}$ or (a ² =) $\frac{3k-3}{k^2-k}$ or (a =) (±) $\sqrt{\frac{3k-3}{k^2-k}}$ collects terms in a ² and factorises correctly on at least one side must use a ² as a factor if awarding mark for factorising ka ² – a ² k ² dep on M3	
	$(a^{2} =) \frac{3(1-k)}{k(1-k)}$ or $(a^{2} =) \frac{3}{k}$ or $(a =) (\pm) \sqrt{\frac{3(1-k)}{k(1-k)}}$	M1dep	oe eg ($a^2 =$) $\frac{3(k-1)}{k(k-1)}$ correct fraction with numerator and denominator factorised correctly dep on M4	
	(a =) $\sqrt{\frac{3}{k}}$ or (a =) $\left(\frac{3}{k}\right)^{\frac{1}{2}}$	A1	oe eg (a =) $\frac{\sqrt{3}}{\sqrt{k}}$ or (a =) $\left(\frac{k}{3}\right)^{-\frac{1}{2}}$ (a =) $\pm \sqrt{\frac{3}{k}}$ M5A0 (a =) $-\sqrt{\frac{3}{k}}$ M5A0	
	Additional Guidance			
	Only one machine fully correct			ly
	Missing brackets must be recovered			

Q	Answer	Mark	Comments		
	Alternative method 1 Powers of 3				
	$(3^2)^{0.5p}$ or $(3^3)^{2p-1}$ or $3^{2 \times 0.5p+4}$	M1	oe powers of 3 eg 3^{p} or 3^{6p-3} or 3^{p+4} brackets not needed if intention clear eg $3^{2^{0.5p}}$		
	$(3^2)^{0.5p}$ and 3^4 and $(3^3)^{2p-1}$ or $3^{2 \times 0.5p+4}$ and $(3^3)^{2p-1}$	M1dep	oe powers of 3 eg 3^p and 3^4 and 3^{6p-3} or 3^{p+4} and 3^{6p-3}		
	$2 \times 0.5p + 4 = 3(2p - 1)$ or p + 4 = 6p - 3	M1dep	oe equation dep on M2		
24	1.4 or $\frac{7}{5}$	A1	oe		
	Alternative method 2 Powers of 9				
	9 ^{0.5p+2} or (9 ^{1.5}) ^{2p-1}	M1	oe power of 9 eg $9^{3p-1.5}$ brackets not needed if intention clear eg $9^{1.5^{2p-1}}$		
	9 ² and $(9^{1.5})^{2p-1}$ or 9 ^{0.5p+2} and $(9^{1.5})^{2p-1}$	M1dep	oe powers of 9 eg 9^2 and $9^{3p-1.5}$ or $9^{0.5p+2}$ and $9^{3p-1.5}$		
	0.5p + 2 = 1.5(2p - 1) or 0.5p + 2 = 3p - 1.5	M1dep	oe equation dep on M2		
	1.4 or $\frac{7}{5}$	A1	oe		

Mark scheme continues on the next page

Q	Answer	Mark	Comments		
	Alternative method 3 Powers of 27				
	$\left(27^{\frac{2}{3}}\right)^{0.5 p}$	M1	oe power of 27 eg $27^{\frac{2}{3} \times 0.5 \text{ p}}$ or $27^{\frac{1}{3}\text{ p}}$ brackets not needed if intention clear eg $27^{\frac{2^{0.5 \text{ p}}}{3}}$		
24	$\left(27^{\frac{2}{3}}\right)^{0.5 \text{ p}}$ and $27^{\frac{4}{3}}$	M1dep	oe powers of 27 eg $27^{\frac{2}{3} \times 0.5 \text{ p}}$ and $27^{\frac{4}{3}}$ or $27^{\frac{1}{3}\text{ p}}$ and $27^{\frac{4}{3}}$ M2 $27^{\frac{2}{3} \times 0.5 \text{ p} + \frac{4}{3}}$ or $27^{\frac{1}{3}\text{ p} + \frac{4}{3}}$		
	$\frac{2}{3} \times 0.5p + \frac{4}{3} = 2p - 1$ or $\frac{1}{3}p + \frac{4}{3} = 2p - 1$	M1dep	oe equation dep on M2		
	1.4 or $\frac{7}{5}$	A1	oe		

Q	Answer	Mark	Comments		
	Alternative method 4 Powers of 81				
	(81 ^{0.5}) ^{0.5p} or (81 ^{0.75}) ^{2p -1} or 81 ^{0.5×0.5p+1}	M1	oe powers of 81 eg $81^{0.25p}$ or $81^{1.5p}$ -0.75 or $81^{0.25p+1}$ brackets not needed if intent eg $81^{0.5^{0.5p}}$	tion clear	
	$(81^{0.5})^{0.5p}$ and $(81^{0.75})^{2p-1}$ or $81^{0.5 \times 0.5p+1}$ and $(81^{0.75})^{2p-1}$	M1dep	oe powers of 81 eg $81^{0.25p}$ and $81^{1.5p-0.75}$ or $81^{0.25p+1}$ and $81^{1.5p-0.75}$		
24	$\begin{array}{c} 0.5 \times 0.5 p + 1 = 0.75 (2p-1) \\ \text{or} \\ 0.25 p + 1 = 1.5 p - 0.75 \end{array}$	M1dep	oe equation dep on M2		
	1.4 or $\frac{7}{5}$	A1	oe		
	Additional Guidance				
	Mark positively if potentially more than one scheme used				
	Answer 1.4			M3A1	
	Correct equation implies M3				
	Just seeing expressions not in an equation and not as powers scores zero eg Alt 1 6p – 3 and p + 4 not in an equation and not as powers of 3			Момомо	
	Allow recovery of missing brackets				
	Use of logs with answer not 1.4 - escalate				