# LEVEL 2 CERTIFICATE Further Mathematics 

8360/2 - Paper 2 Calculator

Mark scheme

June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

| M | Method marks are awarded for a correct method which could <br> lead to a correct answer. |
| :--- | :--- |
| M dep | A method mark dependent on a previous method mark being <br> awarded. |
| A | Accuracy marks are awarded when following on from a <br> correct method. It is not necessary to always see the method. <br> This can be implied. |
| B | Marks awarded independent of method. |
| A mark that can only be awarded if a previous independent |  |
| mark has been awarded. |  |

Examiners should consistently apply the following principles.

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods
Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

## Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

## Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

## Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.



| Q | Answer | Mark | Comments |  |
| :---: | :--- | :---: | :---: | :---: |
| 3 | -0.112 or $-\frac{14}{125}$ | B1 | oe fraction |  |
|  | Additional Guidance |  |  |  |
|  | Ignore incorrect conversion between fraction and decimal if correct value seen |  |  |  |
|  | Ignore rounding or truncation after correct value seen | B0 |  |  |
|  | Answer $-\frac{3.5}{31.25}$ |  |  |  |



| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 4 | 3rd box ticked | B1 |  |
|  | Additional Guidance |  |  |
|  |  |  |  |


|  | Line from ( $-4,0$ ) to (0, 4) |  | M1 | mark intention |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Line from $(0,4)$ to $(2,-2)$ |  | M1 | lines do not have to be straight but must pass through all integer points |  |
|  | Line from ( $2,-2$ ) to | $(5,-2)$ | M1 | only condon that extends | a line main |
|  | Straight line from (and straight line from ( 0 , and straight line from (2 | $(-4,0) \text { to }(0,4)$ $0,4) \text { to }(2,-2)$ $2,-2) \text { to }(5,-2)$ | A1 | all straight li with no othe <br> graph must <br> SC3 ( $-4,0$ ) <br> and $(-1,3)$ <br> and $(3,-2)$ <br> (any other p ones for the <br> SC2 (-4, 0) <br> ( $5,-2$ ) plotted <br> must be cor | ect leng <br> 2) <br> and (2, <br> ) plotte <br> correc <br> and <br> potted <br> h) |
|  | Additional Guidance |  |  |  |  |
| 5 | (crosses do not hav |  <br> ve to be shown) |  |  | M3A1 |
|  | Dashed or dotted lin | ines can score up | 13A0 |  |  |
|  | Points may be implied | lied by a correct |  |  |  |
|  | M mark examples eg1 2 correct lines eg2 1 correct line eg3 3 extended lin | and 1 extended and 2 extended es (but otherwis | but but $o$ ect) | wise correct) wise correct) | M3A0 <br> M2A0 <br> M1A0 |




| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 7 | $\begin{aligned} & \frac{1}{2} \times(8+4) \times a(=63) \\ & \text { or } \frac{1}{2} \times 12 \times a(=63) \\ & \text { or } 6 a(=63) \\ & \text { or } 63 \div 6 \end{aligned}$ | M1 | any letter <br> oe eg $12 \mathrm{a}=126$ <br> or $\frac{1}{2} \times 3 \times a+4 \times a+\frac{1}{2} \times 1 \times a \quad(=63)$ |
|  | 10.5 or $10 \frac{1}{2}$ or $\frac{21}{2}$ | A1 |  |
|  | Additional Guidance |  |  |
|  | M1 is for a full area calc |  |  |


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 8 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | (x-coordinate of $P=$ ) 5.5 <br> and <br> (y-coordinate of $P=$ ) 2.25 | B2 | oe may be seen on diagram <br> B1 (x-coordinate of $P=$ ) 5.5 <br> or <br> (y-coordinate of $P=$ ) 2.25 <br> or <br> x-coordinate of $P=2.25$ <br> and y-coordinate of $P=5.5$ |
|  | $\begin{aligned} & (9-\text { their } 5.5)^{2}+(12-\text { their } 2.25)^{2} \\ & \text { or } 3.5^{2}+9.75^{2} \\ & \text { or } 12.25+95.06(25) \\ & \text { or } 12.25+95.063 \\ & \text { or } 107.3(125) \text { or } 107.313 \end{aligned}$ | M1 | $\begin{aligned} & \text { oe eg } \sqrt{3.5^{2}+9.75^{2}} \text { or } \frac{1717}{16} \\ & 1<\text { their } 5.5<7 \\ & 1<\text { their } 2.25<6 \end{aligned}$ |
|  | 10.36 | A1ft | correct or ft their 5.5 and/or their 2.25 must be rounded to 4 sig figs |
|  | Alternative method 2 Uses $A C=10$ | $B C=\sqrt{ }$ | or $5 \sqrt{5}$ or $11.18 \ldots$ and $A B=\sqrt{61}$ or $7.81 \ldots$ |
|  | $\begin{aligned} & \cos ^{-1} \frac{10^{2}+7.81 \ldots{ }^{2}-11.18 \ldots{ }^{2}}{2 \times 10 \times 7.81 \ldots} \\ & \text { or }[76.67,76.71] \end{aligned}$ | M1 | oe eg $\cos ^{-1} 0.23(0 \ldots)$ or $\cos ^{-1} 0.231$ may be on diagram angle BAC |
|  | $\begin{aligned} & (0.75 \times 7.81 \ldots)^{2}+10^{2} \\ & -2 \times(0.75 \times 7.81 \ldots) \times 10 \times \text { cos their } \\ & {[76.67,76.71]} \end{aligned}$ | M1dep |  |
|  | [107.3, 107.4] | A1 |  |
|  | 10.36 | A1 |  |

## Mark scheme and additional guidance continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 8 | Alternative method 3 Uses $A C=10, B C=\sqrt{125}$ or $5 \sqrt{5}$ or $11.18 \ldots$ and $A B=\sqrt{61}$ or $7.81 \ldots$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \cos ^{-1} \frac{7.81 \ldots{ }^{2}+11.18 \ldots{ }^{2}-10^{2}}{2 \times 7.81 \ldots \times 11.18 \ldots} \\ & \text { or }[60.49,60.66] \end{aligned}$ | M1 | oe eg $\cos ^{-1}$ [0.49, 0.4925] <br> may be on diagram <br> angle $A B C$ |  |
|  | $\begin{aligned} & (0.25 \times 7.81 \ldots)^{2}+11.18 \ldots{ }^{2} \\ & -2 \times(0.25 \times 7.81 \ldots) \times 11.18 \ldots \\ & \times \cos \text { their }[60.49,60.66] \end{aligned}$ | M1dep |  |  |
|  | [107.3, 107.4] | A1 |  |  |
|  | 10.36 | A1 |  |  |
|  |  | ditional | uidance |  |
|  | If 5.5 is from gradient $B C$ |  |  | B0 |
|  | Alt $1 P(4.5,3.75)$ $\begin{aligned} & (9-4.5)^{2}+(12-3.75)^{2} \\ & 9.397 \end{aligned}$ |  |  | $\begin{gathered} \text { B0 } \\ \text { M1 } \\ \text { A1ft } \end{gathered}$ |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 9 | $\frac{2 x^{6}}{3} \text { or } \frac{2}{3} x^{6}$ <br> or $\frac{15 x}{3} \text { or } 5 x$ | M1 | implied by $\frac{2 x^{6}+a}{3}$ or $\frac{b+15 x}{3}$ a can be numerical or algebraic $b$ can be numerical or algebraic allow $0.66 \ldots$ or 0.67 for $\frac{2}{3}$ |
|  | $6 \times \frac{2 x^{5}}{3}$ or $\frac{12 x^{5}}{3}$ or $4 x^{5}$ <br> or <br> $\frac{15}{3}$ or 5 | M1dep | correct differentiation of one correct term implied by $\frac{6 \times 2 x^{5}+a}{3}$ or $\frac{b+15}{3}$ |
|  | $4 x^{5}+5=133$ <br> or $4 x^{5}=128$ <br> or $x^{5}=32$ <br> or $\sqrt[5]{32}$ | A1 | oe <br> both correct terms differentiated and simplified correctly and equated to 133 |
|  | 2 | A1 |  |
|  | Additional Guidance |  |  |
|  | $\frac{14 x^{6}+30 x}{3}$ |  | Zero |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 10 | $\left(\begin{array}{cc}\mathrm{a} & \mathrm{b} \\ 2 \mathrm{a} & 3 \mathrm{~b}\end{array}\right)\binom{1}{-3}=\binom{1}{4}$ | M1 | oe <br> implied by a correct equation |
|  | $a-3 b=1$ | A1 | oe |
|  | $2 \mathrm{a}-9 \mathrm{~b}=4$ | A1 | mplied by correct answers |
|  | Correct elimination of a variable from their 2 linear equations with both equations having the same two variables | M1 | $\begin{aligned} & \text { eg } 3 a-2 a=3-4 \\ & \text { or }-6 b--9 b=2-4 \end{aligned}$ |
|  | $a=-1 \quad b=-\frac{2}{3}$ | A1 | must be exact values |

## Additional guidance continues on the next page



| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 11 | Alternative method 1 expands ( $\mathrm{x}+2$ )(x+3) first |  |  |
|  | $x^{2}+3 x+2 x+6$ or $x^{2}+5 x+6$ | M1 | oe <br> must have a term in $\mathrm{x}^{2}$ <br> allow one error but no omissions or extras <br> implied by $\mathrm{x}^{2}+5 \mathrm{x}+\mathrm{k}$ or $\mathrm{ax}^{2}+5 \mathrm{x}+6$ |
|  | $x^{3}+5 x^{2}+6 x+4 x^{2}+20 x+24$ | M1dep | oe eg $x^{3}+3 x^{2}+2 x^{2}+6 x+4 x^{2}+12 x+8 x+24$ <br> allow one further error but no omissions or extras |
|  | $\mathrm{x}^{3}+9 \mathrm{x}^{2}+26 \mathrm{x}+24$ | A1 |  |
|  | Alternative method 2 expands ( $\mathrm{x}+3$ )(x+4) first |  |  |
|  | $\mathrm{x}^{2}+3 \mathrm{x}+4 \mathrm{x}+12$ or $\mathrm{x}^{2}+7 \mathrm{x}+12$ | M1 | oe <br> must have a term in $\mathrm{x}^{2}$ <br> allow one error but no omissions or extras <br> implied by $\mathrm{x}^{2}+7 \mathrm{x}+\mathrm{k}$ or $\mathrm{ax}^{2}+7 \mathrm{x}+12$ |
|  | $\mathrm{x}^{3}+7 \mathrm{x}^{2}+12 \mathrm{x}+2 \mathrm{x}^{2}+14 \mathrm{x}+24$ | M1dep | oe eg $x^{3}+3 x^{2}+4 x^{2}+12 x+2 x^{2}+6 x+8 x+24$ <br> allow one further error but no omissions or extras |
|  | $\mathrm{x}^{3}+9 \mathrm{x}^{2}+26 \mathrm{x}+24$ | A1 |  |

## Mark scheme and additional guidance continues on the next page

| Q | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 11 | Alternative method 3 expands $(x+2)(x+4)$ first |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{x}^{2}+4 \mathrm{x}+2 \mathrm{x}+8$ or $\mathrm{x}^{2}+6 \mathrm{x}+8$ | M1 | oe <br> must have a term in $\mathrm{x}^{2}$ <br> allow one error but no omissions or extras implied by $x^{2}+6 x+k$ or $a x^{2}+6 x+8$ |  |
|  | $x^{3}+6 x^{2}+8 x+3 x^{2}+18 x+24$ | M1dep | oe eg $x^{3}+4 x^{2}+2 x^{2}+8 x+3 x^{2}+12 x+6 x+24$ <br> allow one further error but no omissions or extras |  |
|  | $x^{3}+9 x^{2}+26 x+24$ | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | For M marks terms may be seen in a grid (+ signs not needed) |  |  |  |
|  | Correct answer followed by further work |  |  | M2A0 |
|  | Ignore further simplification after 4 terms seen <br> eg Alt $1 x^{2}+3 x+2 x+6=x^{2}+6 x+6$ $\left(x^{2}+6 x+6\right)(x+4) \rightarrow x^{3}+4 x^{2}+6 x^{2}+24 x+6 x+18 \text { (error) }$ |  |  | M1 <br> M1depA0 |
|  | Second M1 <br> Must be the product of a two term bracket and a three or four term bracket |  |  |  |
|  | Missing brackets may be recovered |  |  |  |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 12(a) | Valid common denominator with at least one numerator correct | M1 | eg $\frac{7 x}{9 x^{2}}$ and $\frac{a}{9 x^{2}}$ <br> or $\frac{7 x+a}{9 x^{2}}$ <br> or $\frac{b}{9 \mathrm{x} \times 3 \mathrm{x}^{2}}$ and $\frac{2 \times 9 \mathrm{x}}{9 \mathrm{x} \times 3 \mathrm{x}^{2}}$ <br> numerators and denominato seen as products <br> a can be numerical or algebr <br> b can be numerical or algebr | y be |
|  | Valid common denominator with both numerators correct | M1dep | $\frac{7 \mathrm{x}}{9 \mathrm{x}^{2}} \text { and } \frac{6}{9 \mathrm{x}^{2}}$ <br> or $\frac{7 \times 3 \mathrm{x}^{2}}{9 \mathrm{x} \times 3 \mathrm{x}^{2}}$ and $\frac{2 \times 9 \mathrm{x}}{9 \mathrm{x} \times 3 \mathrm{x}^{2}}$ <br> numerators and denominator seen as products | y be |
|  | $\frac{7 x+6}{9 x^{2}} \text { or } \frac{7 x+6}{(3 x)^{2}}$ <br> with no further work | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | $\frac{21 x^{2}+18 x}{27 x^{3}} \text { or } \frac{21 x+18}{27 x^{2}} \text { or } \frac{7 x^{2}+6 x}{9 x^{3}}$ |  |  | M2A0 |
|  | $\frac{7 x^{-1}+6 x^{-2}}{9}$ |  |  | M2A0 |
|  | $7 \mathrm{x}+6 / 9 \mathrm{x}^{2}$ |  |  | M2A0 |



| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 13(a) | 1 | B1 | allow in words |  |
| :---: | :---: | :---: | :--- | :--- |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| 13(b) | 0 | B 1 | allow in words eg none or zero |  |
| :---: | :--- | :--- | :--- | :--- |
|  | Additional Guidance |  |  |  |
|  |  |  |  |  |


| 13(c) | $(0,1)(90,0)(270,0)$ <br> with no other points | B2 | B1 two answers, both correct or three answers, two correc or four answers, three correc |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Additional Guidance |  |  |  |
|  | Condone 0,1 for ( 0,1 ) etc |  |  |  |
|  | 0, 90, 270 |  |  | B0 |
|  | $(1,0)(0,90)(0,270)$ |  |  | B0 |


| Q | Answer Mark |  | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 14(a) | $6 p q^{2} r(2 q-3 r+4)$ | B2 | B1 correct factorised expression with a common factor involving at least two variables $\begin{aligned} & \text { eg } \mathrm{pq}\left(12 \mathrm{q}^{2} \mathrm{r}-18 \mathrm{qr}^{2}+24 \mathrm{qr}\right) \\ & \text { or } 2 \mathrm{q}^{2} \mathrm{r}(6 \mathrm{pq}-9 \mathrm{pr}+12 \mathrm{p}) \end{aligned}$ <br> or <br> common factor $6 \mathrm{pq}^{2} \mathrm{r}$ with two out of the three terms in the bracket correct $\text { eg } 6 q^{2} r(2 q-3 r+4 p)$ |  |
|  | Additional Guidance |  |  |  |
|  | B2 answer followed by further work |  |  | B1 |
|  | $6 p q^{2} r(2 q-3 r+4)$ in working with $6 q p^{2} r(2 q-3 r+4)$ on answer line |  |  | B1 |
|  | B1 answer followed by further work |  |  | B1 |
|  | $2 q^{2} \mathrm{r}(6 \mathrm{pq}-9 \mathrm{pr}+12 \mathrm{p})$ in working with $2 \mathrm{p}^{2} \mathrm{r}(6 \mathrm{pq}-9 \mathrm{pr}+12 \mathrm{p})$ on answer line |  |  | B1 |
|  | Use of multiplication signs scores a maximum of B1 |  |  |  |
|  | qpq( $\left.12 \mathrm{qr}-18 \mathrm{r}^{2}+24 \mathrm{r}\right)$ |  |  | B1 |
|  | $6 \mathrm{pqrq}(2 q-3 r+4)$ |  |  | B1 |



| Q | Answer Mark |  | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 14(c) | $3(4+5 x)(4-5 x)$ <br> or $3(-4-5 x)(5 x-4)$ <br> or $-3(4+5 x)(5 x-4)$ <br> or $-3(-4-5 x)(4-5 x)$ | B2 | B1 Partial factorisation eg $3\left(16-25 x^{2}\right)$ or $-3\left(25 x^{2}-16\right)$ or $(12+15 x)(4-5 x)$ or $(12-15 x)(4+5 x)$ |  |
|  | Additional Guidance |  |  |  |
|  | Brackets in either order for B2 or B1 |  |  |  |
|  | $-\left(75 x^{2}-48\right)$ |  |  | B0 |
|  | $(-5 x+4)$ is equivalent to ( $4-5 x)$ etc |  |  |  |
|  | Incorrect notation eg ( $4+5 \mathrm{x}) 3(4-5 \mathrm{x})$ |  |  | B1 |
|  | Use of surds$\text { eg }(\sqrt{48}+\sqrt{75} x)(\sqrt{48}-\sqrt{75} x) \text { or }(4 \sqrt{3}+5 \sqrt{3} x)(4 \sqrt{3}-5 \sqrt{3} x)$ |  |  | B1 |
|  | Use of multiplication signs scores a maximum of B1 eg $3 \times(4+5 x)(4-5 x)$ |  |  | B1 |
|  | B2 answer followed by further work |  |  | B1 |
|  | B1 answer followed by further work |  |  | B1 |
|  | Missing brackets must be recovered eg $3 \times 16-25 \mathrm{x}^{2}$ |  |  | B0 |



| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

## Alternative method 1

| $2(2-5 x)+3(3 x-1)$ <br> or $4-10 x$ or $9 x-3$ | M1 |  |
| :--- | :---: | :--- |
| $4-10 x+9 x-3=1-x$ | M1dep |  |
| $(1-x)^{2}=1-2 x+x^{2}$ | A1 | must see working for M2 |
| $2-5 x+3 x-1+x^{2}=1-2 x+x^{2}$ | B1 |  |

## Alternative method 2

$\begin{array}{|l|l|l|}\hline \begin{array}{l}4(2-5 x)^{2}+6(2-5 x)(3 x-1) \\ +6(2-5 x)(3 x-1)+9(3 x-1)^{2}\end{array} & \text { M1 } & \begin{array}{l}\text { oe } \\ \text { allow }+12(2-5 x)(3 x-1) \text { for } \\ +6(2-5 x)(3 x-1)+6(2-5 x)(3 x-1)\end{array} \\ \hline 4\left(4-10 x-10 x+25 x^{2}\right) \\ +6\left(6 x-2-15 x^{2}+5 x\right) \\ +6\left(6 x-2-15 x^{2}+5 x\right) \\ +9\left(9 x^{2}-3 x-3 x+1\right) \\ =16-40 x-40 x+100 x^{2}+36 x-12 \\ -90 x^{2}+30 x+36 x-12-90 x^{2} \\ +30 x+81 x^{2}-27 x-27 x+9\end{array} \quad$ M1dep $\left.\begin{array}{l}\text { oe } \\ \text { must see expansions } \\ \text { must see working for 1st M1 } \\ \text { allow }+12\left(6 x-2-15 x^{2}+5 x\right) \text { for } \\ +6\left(6 x-2-15 x^{2}+5 x\right) \\ +6\left(6 x-2-15 x^{2}+5 x\right)\end{array}\right\}$

Mark scheme and additional guidance continues on the next page

| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 16 | Alternative method 3 |  |  |  |
|  | $\begin{aligned} & 2(2-5 x)+3(3 x-1) \\ & \text { or } 4-10 x \text { or } 9 x-3 \end{aligned}$ | M1 | oe |  |
|  | $\begin{aligned} & (4-10 x+9 x-3)^{2} \\ & =16-40 x+36 x-12-40 x+100 x^{2} \\ & -90 x^{2}+30 x+36 x-90 x^{2}+81 x^{2} \\ & -27 x-12+30 x-27 x+9 \end{aligned}$ | M1dep | oe must see expansions |  |
|  | $1-2 x+x^{2}$ | A1 | must see working for M2 |  |
|  | $2-5 x+3 x-1+x^{2}=1-2 x+x^{2}$ | B1 |  |  |
|  | Additional Guidance |  |  |  |
|  | Allow working down both sides of an equation/identity |  |  |  |
|  | M2A1 is for working on $(2 A+3 B)^{2}$ |  |  |  |
|  | $B 1$ is for working on $\mathrm{A}+\mathrm{B}+\mathrm{C}$ |  |  |  |
|  | $1-2 x+x^{2}$ with working for M2 seen and $2-5 x+3 x-1+x^{2}=x^{2}-2 x+1$ |  |  | 4 marks |
|  | $1-x^{2}=1-2 x+x^{2}$ (do not allow missing brackets even if recovered) |  |  |  |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 17(a) | $(-5)^{2}+2^{2}=29$ | B1 | oe involving use of -5 and 2 eg $(-5-0)^{2}+(2-0)^{2}=29$ or $(0--5)^{2}+(0-2)^{2}=29$ <br> or $\sqrt{(-5)^{2}+2^{2}}=\sqrt{29}$ <br> or $29-(-5)^{2}=2^{2}$ <br> or $29-2^{2}=(-5)^{2}$ <br> or $\sqrt{29-(-5)^{2}}=2$ <br> or $\sqrt{29-2^{2}}=-5$ |  |
|  | Additional Guidance |  |  |  |
|  | $25+4=29$ |  |  | B0 |
|  | $-5^{2}+2^{2}=29$ |  |  | B0 |
|  | Allow 29 to be written as $\sqrt{29}{ }^{2}$ |  |  |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 17(b) | Alternative method 1 Using gradients |  |  |
|  | (gradient $\mathrm{OP}=$ ) <br> $\frac{2-0}{-5-0}$ or $-\frac{2}{5}$ or -0.4 | M1 | oe <br> may be implied $\text { eg } y=-\frac{2}{5} x$ <br> or gradient of tangent $=\frac{5}{2}$ (with gradient OP not seen) |
|  | (gradient tangent $=$ ) $\frac{-1}{\text { their }-\frac{2}{5}}$ or $\frac{5}{2}$ or 2.5 | M1 | oe correct or ft their $-\frac{2}{5}$ |
|  | $y-2=\text { their } \frac{5}{2}(x--5)$ <br> or $0-2=\text { their } \frac{5}{2}(x--5)$ <br> or $2=\text { their } \frac{5}{2} \times-5+c$ | M1dep | oe <br> dep on 2nd M1 <br> equation of their tangent with or without substitution of $y=0$ <br> implied by $y=\frac{5}{2} x+\frac{29}{2}$ oe <br> or $0=\frac{5}{2} x+\frac{29}{2}$ oe |
|  | $-\frac{29}{5} \text { or }-5.8$ | A1 | oe <br> allow $\left(-\frac{29}{5}, 0\right)$ <br> SC2 answer $-10\left(\right.$ grad tangent $\left.=\frac{2}{5}\right)$ <br> SC2 answer $-\frac{21}{5}$ or -4.2 oe <br> $\left(\right.$ grad tangent $\left.=-\frac{5}{2}\right)$ |

Mark scheme and additional guidance continues on the next page

| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 17(b) | Alternative method 2 Using similar triangles (see diagram in Additional Guidance) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\frac{\mathrm{a}}{2}=\frac{2}{5}$ | M1 | oe equation any letter |  |
|  | $\mathrm{a}=\frac{2}{5} \times 2$ or $\mathrm{a}=\frac{4}{5}$ | M1dep |  |  |
|  | -5-their $\frac{4}{5}$ | M1dep | dep on M2 |  |
|  | $-\frac{29}{5} \text { or }-5.8$ | A1 | oe allow $\left(-\frac{29}{5}, 0\right)$ <br> SC2 answer - 10 (grad ta SC2 answer $-\frac{21}{5}$ or -4 $\left(\right.$ grad tangent $\left.=-\frac{5}{2}\right)$ | $\left.t=\frac{2}{5}\right)$ |
|  | Additional Guidance |  |  |  |
|  | Alt 1 2nd M mark is not dependent but there must be a numerical value for grad OP to ft |  |  |  |
|  | $\operatorname{grad} \mathrm{OP}=-0.4$ and grad tangent $=-0.4$ |  |  | M1MOMOAO |
|  | $\left(0,-\frac{29}{5}\right)$ |  |  | M3A0 |
|  | Ignore any incorrect conversion between fraction and decimal after correct answer seen |  |  |  |
|  | Alt 2 diagram |  |  |  |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 18(a) | $\begin{aligned} & -5-3<4 x \leqslant 13-3 \\ & \text { or }-8<4 x \leqslant 10 \\ & \text { or }-1.25<x+0.75 \leqslant 3.25 \\ & \text { or } x \leqslant 2.5 \\ & \text { or } x>-2 \\ & \text { or } x \leqslant 2 \\ & \text { or } x \geqslant-1 \end{aligned}$ | M1 | could be embedded eg - $\leqslant \leqslant$ | 2.5 |
|  | $\begin{aligned} & \frac{\text { their }-8}{4}<x \leqslant \frac{\text { their } 10}{4} \\ & \text { or } \\ & \text { their }-1.25-0.75<x \leqslant \text { their } 3.25- \\ & 0.75 \\ & \text { or }-2<x \leqslant 2.5 \\ & \text { or }-2<x \leqslant 2 \\ & \text { or }-1 \leqslant x \leqslant 2.5 \\ & \text { or }-1 \leqslant x \leqslant 2 \\ & \text { or } x \leqslant 2.5 \text { and } x>-2 \\ & \text { or } x \leqslant 2 \text { and } x>-2 \\ & \text { or } x \leqslant 2.5 \text { and } x \geqslant-1 \\ & \text { or } x \leqslant 2 \text { and } x \geqslant-1 \end{aligned}$ | M1dep | oe eg (-2, 2.5] or [-1, 2.5] |  |
|  | $\begin{array}{lllll} -1 & 0 & 1 & 2 \end{array}$ <br> with no incorrect working | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | Answer only -10012 |  |  | M2A1 |
|  | Answer only -1112 |  |  | Zero |
|  | $\mathrm{x}=2.5$ and $\mathrm{x}=-2$ (from solving equations) followed by $\begin{array}{lllll}-1 & 0 & 1 & 2\end{array}$ |  |  | M2A1 |
|  | $\mathrm{x}=2.5$ and $\mathrm{x}=-2$ (from solving equations) |  |  | Zero |
|  | -1 $00102 \begin{array}{lll}\text { with no incorrect working and a correct inequality on answer line }\end{array}$ |  |  | M2A1 |
|  | -1 00 |  |  | M2A0 |
|  | $\begin{array}{llllllll}\text { Ignore repeated integers eg Answer only -1 } & 0 & 1 & 1 & 2 & 2\end{array}$ |  |  | M2A1 |


| Q | Answer | Mark | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 18(b) | $(x-4)(x-7)$ <br> or $\frac{--11 \pm \sqrt{(-11)^{2}-4 \times 1 \times 28}}{2 \times 1}$ <br> or $\frac{11}{2} \pm \sqrt{\frac{9}{4}}$ | M1 | oe |  |
|  | Identifies 4 and 7 | A1 | may be on a graph or implied by an inequality using 4 and 7 |  |
|  | $\mathrm{x}<4 \quad \mathrm{x}>7$ | A1 | do not allow incorrect notation eg $4>x>7$ |  |
|  | Additional Guidance |  |  |  |
|  | $\mathrm{x}<4$ with M1 not scored |  |  | Zero |
|  | $x>7$ with M1 not scored |  |  | Zero |
|  | Both $\mathrm{x}<4$ and $\mathrm{x}>7$ in working but only one on answer line |  |  | M1A1A0 |
|  | $\mathrm{x}<4$ and $\mathrm{x}>7$ |  |  | M1A2 |
|  | $\mathrm{x}<4$ or $\mathrm{x}>7$ |  |  | M1A2 |


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method $1 \quad \mathrm{C}(\mathrm{BA})$
$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
and
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
and
B5
indication that $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity matrix
for B5, products must be seen in correct order and results of products must be correct
B4 a B5 response with no indication that $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity matrix

B3 (reflection in $y=-x$ ) $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
and (rotation) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
and (reflection in x-axis) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
B2 Any two of the above
B1 Any one of the above
Alternative method 2 (CB)A
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
and
$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
and
indication that $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity matrix
for B5, products must be seen in correct order and results of products must be correct
B4 a B5 response with no indication that $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity matrix

B3 (reflection in $y=-x)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
and (rotation) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
and (reflection in $x$-axis) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
B2 Any two of the above
B1 Any one of the above

| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 3 transforms a general point

$$
\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{x}{y}=\binom{-y}{-x}
$$

and
$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{-y}{-x}=\binom{x}{-y}$
and
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{x}{-y}=\binom{x}{y}$
and
indication that $\binom{x}{y}$ has mapped to
itself
for B5, products must be seen in correct order and results of products must be correct

B4 a B5 response with no indication that $\binom{x}{y}$ has mapped to itself
$B 3$ (reflection in $y=-x)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
and (rotation) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
and (reflection in x-axis) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
B2 Any two of the above
B1 Any one of the above

Alternative method 4 transforms the unit square

19
$\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
$=\left(\begin{array}{cccc}0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0\end{array}\right)$
and
$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cccc}0 & 0 & -1 & -1 \\ 0 & -1 & -1 & 0\end{array}\right)$
$=\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1\end{array}\right)$
B5
and
$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cccc}0 & 1 & 1 & 0 \\ 0 & 0 & -1 & -1\end{array}\right)$
$=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right)$
and
indication that unit square has mapped to itself
columns in 2 by 4 matrices can be in any order
for B5, products must be seen in correct order and results of products must be correct

B4 a B5 response with no indication that unit square has mapped to itself
$B 3$ (reflection in $y=-x)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
and (rotation) $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
and (reflection in x-axis) $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
B2 Any two of the above
B1 Any one of the above


| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 20(a) | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $12^{2}+\left(\frac{10}{2}\right)^{2} \text { or } 12^{2}+5^{2}$ <br> or $144+25$ or 169 | M1 | $\begin{aligned} & \mathrm{oe} \\ & R M^{2} \end{aligned}$ |
|  | $\sqrt{\text { their 169 or } 13}$ | M1dep | oe <br> RM <br> may be seen on diagram 13 implies M2 |
|  | $\tan \mathrm{x}=\frac{7}{\text { their } 13}$ | M1dep | any letter $\text { oe eg } \tan ^{-1} \frac{7}{\text { their } 13}$ |
|  | 28(.3...) | A1 |  |

Mark scheme and additional guidance continues on the next page



| Q | Answer Mark |  | Comments |  |
| :---: | :---: | :---: | :---: | :---: |
| 21 | $(-1,3)$ or $(2,1)$ | M1 |  |  |
|  | $(-1,3) \max ($ imum $)$ | A1 |  |  |
|  | $(2,1)$ (point of) inflection | A1 | SC1 $(3,-1)$ max(imum) and ( 1,2 ) (point of) inflection |  |
|  | Additional Guidance |  |  |  |
|  | One correct point and nature |  |  | M1A1 |
|  | Ignore reference to 'stationary points' or 'turning points' or 'local' |  |  |  |
|  | Condone poi for point of inflection |  |  |  |


| Q | Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| 22(a) | Alternative method 1 |  |  |
|  | Divides trigonometric expression by $\cos \mathrm{x}$ <br> or rearranges equation | M1 | eg <br> $8 \frac{\cos x}{\cos x}+5 \frac{\sin x}{\cos x}$ <br> or $8+5 \frac{\sin x}{\cos x}$ <br> or $8 \cos x=-5 \sin x$ <br> or $\frac{\cos x}{\sin x}=-\frac{5}{8}$ <br> or $8 \frac{\cos x}{\cos x}=-5 \frac{\sin x}{\cos x}$ <br> or $5 \tan x=-8$ |
|  | $\tan \mathrm{x}=-\frac{8}{5}$ or $\tan \mathrm{x}=-1.6$ or <br> $\cos \mathrm{x}=-\frac{5}{\sqrt{89}}$ <br> or $-57.9 \ldots$ or -58 | A1 | oe eg $\tan ^{-1}-1.6$ <br> may be implied by final answer |
|  | 122.(0...) <br> with no other angle | A1 |  |

Mark scheme and additional guidance continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 22(a) | Alternative method 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Divides trigonometric expression by cos x <br> or <br> rearranges equation | M1 | eg <br> $8 \frac{\cos x}{\cos x}+5 \frac{\sin x}{\cos x}$ <br> or $8+5 \frac{\sin x}{\cos x}$ <br> or $8 \cos x=-5 \sin x$ <br> or $\frac{\cos x}{\sin x}=-\frac{5}{8}$ <br> or $8 \frac{\cos x}{\cos x}=-5 \frac{\sin x}{\cos x}$ <br> or $5 \tan x=-8$ |  |
|  | $\sin x=\frac{8}{\sqrt{89}}$ <br> or $57.9 \ldots$ or 58 | A1 | $\text { oe eg } \sin ^{-1} \frac{8}{\sqrt{89}}$ <br> may be implied by fina |  |
|  | 122.(0...) <br> with no other angle | A1 |  |  |
|  |  | iona | idance |  |
|  | Allow division of expression by kcos eg $(k=8) 1+\frac{5 \sin x}{8 \cos x}$ |  |  | M1 |
|  | Answer only 122.(0...) |  |  | M1A2 |
|  | Embedded answer 122.(0...) |  |  | M1A1A0 |
|  | Answer only 121.9 |  |  | Zero |
|  | If working seen, use the alt method f | wo | g seen |  |
|  | Answer only -58 (BOD alt 1) |  |  | M1A1A0 |
|  | Answer only 58 (BOD alt 2) |  |  | M1A1A0 |
|  | Allow cos for cos x etc |  |  |  |
|  | Allow c for cos x etc |  |  |  |


| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 22(b) | Alternative method 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 6\left(1-\cos ^{2} x\right)+4 \cos ^{2} x \\ & \text { or } 6-6 \cos ^{2} x+4 \cos ^{2} x \\ & \text { or } 2\left(1-\cos ^{2} x\right)+4 \\ & \text { or } 6-2 \cos ^{2} x \end{aligned}$ | M1 | oe expression in terms of $\cos ^{2} \mathrm{x}$ |  |
|  | $A=6 \text { and } B=-2$ <br> with no incorrect working | A1 |  |  |
|  | Alternative method 2 |  |  |  |
|  | $A \sin ^{2} x+A \cos ^{2} x+B \cos ^{2} x$ and $A=6$ and $A+B=4$ | M1 |  |  |
|  | $A=6 \text { and } B=-2$ <br> with no incorrect working | A1 |  |  |
|  | Additional Guidance |  |  |  |
|  | $A=6$ and $B=-2$ with no work |  |  | M1A1 |

Q
Answer

| $\left(\mathrm{a}^{2}+3\right) \times \mathrm{k}$ or $\mathrm{ka}^{2}+3 \mathrm{k}$ | M1 | oe eg $b=k a^{2}+3 k$ may be seen on diagram |
| :---: | :---: | :---: |
| $(\mathrm{ak})^{2}+3$ or $\mathrm{a}^{2} \mathrm{k}^{2}+3$ | M1 | oe eg $b=a^{2} k^{2}+3$ <br> may be seen on diagram |
| $\mathrm{ka}^{2}+3 \mathrm{k}=\mathrm{a}^{2} \mathrm{k}^{2}+3$ | M1dep | oe equates and expands brackets correctly dep on M2 may include -b on each side |
| $a^{2}\left(k-k^{2}\right)=3-3 k$ <br> or $\mathrm{ka}^{2}(1-\mathrm{k})=3-3 \mathrm{k}$ <br> or $\mathrm{ka}^{2}-\mathrm{a}^{2} \mathrm{k}^{2}=3(1-\mathrm{k})$ <br> or $\mathrm{a}^{2}\left(\mathrm{k}-\mathrm{k}^{2}\right)=3(1-\mathrm{k})$ <br> or $\mathrm{ka}^{2}(1-\mathrm{k})=3(1-\mathrm{k})$ <br> or $\mathrm{a}^{2}\left(\mathrm{k}^{2}-\mathrm{k}\right)=3 \mathrm{k}-3$ <br> or $\mathrm{ka}^{2}(\mathrm{k}-1)=3 \mathrm{k}-3$ <br> or $k^{2} a^{2}-k a^{2}=3(k-1)$ <br> or $\mathrm{a}^{2}\left(\mathrm{k}^{2}-\mathrm{k}\right)=3(\mathrm{k}-1)$ <br> or $\mathrm{ka}^{2}(\mathrm{k}-1)=3(\mathrm{k}-1)$ | M1dep | oe eg $\left(\mathrm{a}^{2}=\right) \frac{3-3 \mathrm{k}}{\mathrm{k}-\mathrm{k}^{2}}$ or $(\mathrm{a}=)( \pm) \sqrt{\frac{3-3 \mathrm{k}}{\mathrm{k}-\mathrm{k}^{2}}}$ or $\left(\mathrm{a}^{2}=\right) \frac{3 \mathrm{k}-3}{\mathrm{k}^{2}-\mathrm{k}}$ or $(\mathrm{a}=)( \pm) \sqrt{\frac{3 \mathrm{k}-3}{\mathrm{k}^{2}-\mathrm{k}}}$ <br> collects terms in $\mathrm{a}^{2}$ and factorises correctly on at least one side <br> must use $\mathrm{a}^{2}$ as a factor if awarding mark for factorising $k a^{2}-a^{2} k^{2}$ <br> dep on M3 |
| $\begin{aligned} & \left(\mathrm{a}^{2}=\right) \frac{3(1-\mathrm{k})}{\mathrm{k}(1-\mathrm{k})} \text { or } \quad\left(\mathrm{a}^{2}=\right) \frac{3}{\mathrm{k}} \\ & \text { or }(\mathrm{a}=)\left( \pm \sqrt{\frac{3(1-\mathrm{k})}{\mathrm{k}(1-\mathrm{k})}}\right. \end{aligned}$ | M1dep | $\text { oe eg }\left(a^{2}=\right) \frac{3(k-1)}{k(k-1)}$ <br> correct fraction with numerator and denominator factorised correctly dep on M4 |
| $(\mathrm{a}=) \sqrt{\frac{3}{\mathrm{k}}} \text { or }(\mathrm{a}=)\left(\frac{3}{\mathrm{k}}\right)^{\frac{1}{2}}$ | A1 | $\begin{aligned} & \text { oe eg }(a=) \frac{\sqrt{3}}{\sqrt{k}} \text { or }(a=)\left(\frac{k}{3}\right)^{-\frac{1}{2}} \\ & (a=) \pm \sqrt{\frac{3}{k}} \text { M5AO } \quad(a=)-\sqrt{\frac{3}{k}} \text { M5AO } \end{aligned}$ |
| Additional Guidance |  |  |
| Only one machine fully correct |  | M1 only |
| Missing brackets must be recovered |  |  |


| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

Alternative method 1 Powers of 3

| $\left(3^{2}\right)^{0.5 p} \text { or }\left(3^{3}\right)^{2 p-1}$ <br> or $3^{2 \times 0.5 p+4}$ | M1 | oe powers of 3 $\text { eg } 3^{p} \text { or } 3^{6 p-3}$ <br> or <br> $3^{\mathrm{p}+4}$ <br> brackets not needed if intention clear eg $3^{2^{0.5 p}}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & \left(3^{2}\right)^{0.5 \mathrm{p}} \text { and } 3^{4} \text { and }\left(3^{3}\right)^{2 p-1} \\ & \text { or } \\ & 3^{2 \times 0.5 p+4} \text { and }\left(3^{3}\right)^{2 p-1} \end{aligned}$ | M1dep | oe powers of 3 <br> eg $3^{p}$ and $3^{4}$ and $3^{6 p-3}$ <br> or $3^{\mathrm{p}+4} \text { and } 3^{6 \mathrm{p}-3}$ |
| $2 \times 0.5 p+4=3(2 p-1)$ <br> or $p+4=6 p-3$ | M1dep | oe equation dep on M2 |
| $1.4 \text { or } \frac{7}{5}$ | A1 | oe |

Alternative method 2 Powers of 9

| $9^{0.5 p+2}$ or $\left(9^{1.5}\right)^{2 p-1}$ | M1 | oe power of 9 <br> eg 9 9p-1.5 <br> brackets not needed if intention clear <br> eg 91.5 |
| :--- | :--- | :--- |
| $9^{2}$ and $\left(9^{1.5}\right)^{2 p-1}$ <br> or <br> $9^{0.5 p+2}$ and $\left(9^{1.5}\right)^{2 p-1}$ | M1dep | oe powers of 9 <br> eg $9^{2}$ and $9^{3 p-1.5 ~}$ <br> or <br> $9^{0.5 p+2}$ and $9^{3 p-1.5 ~}$ |
| $0.5 p+2=1.5(2 p-1)$ <br> or <br> $0.5 p+2=3 p-1.5$ | M1dep | oe equation <br> dep on M2 |
| 1.4 or $\frac{7}{5}$ | A1 | oe |

Mark scheme continues on the next page

| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| 24 | Alternative method 3 Powers of 27 |  |  |
| :---: | :---: | :---: | :---: |
|  | $\left(27^{\frac{2}{3}}\right)^{0.5 \mathrm{p}}$ | M1 | oe power of 27 $\text { eg } 27^{\frac{2}{3} \times 0.5 p} \text { or } 27^{\frac{1}{3} p}$ <br> brackets not needed if intention clear $\text { eg } 27^{\frac{2^{0.5}}{3}}$ |
|  | $\left(27^{\frac{2}{3}}\right)^{0.5 \mathrm{p}} \text { and } 27^{\frac{4}{3}}$ | M1dep | oe powers of 27 <br> eg $27^{\frac{2}{3} \times 0.5 \mathrm{p}}$ and $27^{\frac{4}{3}}$ <br> or <br> $27^{\frac{1}{3} \mathrm{p}}$ and $27^{\frac{4}{3}}$ <br> M2 $27^{\frac{2}{3} \times 0.5 \mathrm{p}+\frac{4}{3}}$ or $27^{\frac{1}{3} p+\frac{4}{3}}$ |
|  | $\frac{2}{3} \times 0.5 p+\frac{4}{3}=2 p-1$ <br> or $\frac{1}{3} p+\frac{4}{3}=2 p-1$ | M1dep | oe equation dep on M2 |
|  | 1.4 or $\frac{7}{5}$ | A1 | oe |

## Mark scheme and additional guidance continues on the next page

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |



