GCE

Chemistry A

H432/01: Periodic table, elements and physical chemistry

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Tuesday 5 October 2021 -Afternoon

A Level Chemistry A
H432/01 Periodic table, elements and physical chemistry

MARK SCHEME

MAXIMUM MARK

Last updated: 17/10/2021

Post-standardisation

This document consists of 27 pages

1. Annotations

Annotation	Meaning
A	Correct response
\boldsymbol{A}	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Alternative wording
AW	Or reverse argument words must be present in answer to score a mark
ORA	

Question	Answer	Marks	AO element	Guidance
$\mathbf{1}$	C	1	AO1.1	
2	B	1	AO1.2	
3	D	1	AO2.6	
4	B	1	AO2.2	
5	D	1	AO2.6	
6	C	1	AO2.6	
7	A	1	AO1.1	
$\mathbf{8}$	B	1	AO2.2	
10	B	1	AO2.2	
11	A	1	AO2.6	
13	C	1	AO1.2	
14	D	1	AO1.2	
15	B	1	AO1.1	
		1	AO2.1	

Question			Answer												Marks	AO element	Guidance
16	(a)		(delocalised) electrons Diagram with regular arrangement of labelled ${ }^{\mathbf{M}} \mathbf{M g}^{\mathbf{2 +}}$ ions' OR '2+ ions' AND attempt to show electrons \checkmark Labelled electrons between other species AND statement anywhere of delocalised electrons (can be in text or in diagram) Electrons move												3		Regular arrangement must have at least two rows of correctly charged ions and a minimum of two ions per row ALLOW as label: +2 ions OR + 2 cations OR +2/2+ seen within circle ALLOW e- or 'e' as a label for electron IGNORE "-" for electron label ALLOW mobile/flow for move IGNORE 'carry charge'
	(b)	(i)	$\mathrm{Mg}^{3+}(\mathrm{g}) \rightarrow \mathrm{Mg}^{4+}(\mathrm{g})+\mathrm{e}^{-} \checkmark$												1	A01.2	State symbols required (ignore states on electrons) ALLOW $\mathrm{Mg}^{3+}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{4+}(\mathrm{g})$ ALLOW $\mathrm{Mg}^{+3}(\mathrm{~g})$ ALLOW e for e^{-}
	(b)	(ii)	Big jump/larger difference between 2 and $3 \checkmark$												1	AO1.2	IGNORE big jump between 10 and 11 DO NOT ALLOW other combinations.
	(b)	(iii)	1st i.e. 1 1 \checkmark	2	$\begin{gathered} 3 \mathrm{rd} \\ \hline 3 \\ \hline \checkmark \end{gathered}$	1st AND 3rd AND 4th AND 5th AND 9th AND 11th \checkmark i.e.						$\begin{array}{\|l} 3 \text { th } A \\ \hline 10 \end{array}$	$\begin{aligned} & \text { ND } \\ & \hline \frac{11}{\checkmark} \end{aligned}$	11th \checkmark 12	1	AO2.1	

Question		Answer	Marks	AO	Guidance
(c)	(i)	(enthalpy change for) 1 mole of a compound/substance/solid/solute dissolving \checkmark	1	AO1.1	IGNORE ‘energy released’ OR ‘energy required' For dissolving, ALLOW forms aqueous/hydrated ions IGNORE ionic OR covalent DO NOT ALLOW dissolving elements DO NOT ALLOW response that implies formation of 1 mole of aqueous ions
(c)	(ii)	$\begin{array}{r} \mathrm{Mg}^{\frac{2+}{}(\mathrm{aq})+2 \mathrm{~F}^{=}(\mathrm{g})}{ }^{\checkmark} \\ \mathrm{Mg}^{\underline{2}^{+}(\mathrm{aq})+2 \mathrm{~F}^{=}(\mathrm{aq}) \quad \checkmark} \end{array}$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW Mg ${ }^{2+}(\mathrm{g})+2 \mathrm{~F}^{-}(\mathrm{aq})$ ALLOW MgF ${ }_{2}(\mathrm{aq})$
(c)	(iii)	$\begin{aligned} & -6\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)^{\checkmark} \\ & \Delta_{\mathrm{sol}} H\left(\mathrm{MgF}_{2}\right)=-(-2926)+(2 \times-506)+(-1920) \end{aligned}$	1	AO2.2	1 mark ONLY
(c)	(iv)	Ionic radius Halide ion gets larger down the group \checkmark Lattice enthalpy Lattice enthalpy is less exothermic down group OR halide ion has less attraction for $\mathrm{Mg}^{2+} \checkmark$ Hydration enthalpy Hydration enthalpy is less exothermic down group OR halide ion has less attraction for $\mathrm{H}_{2} \mathrm{O} \checkmark$ Enthalpy of solution Difficult to predict whether lattice enthalpy or hydration enthalpy has bigger effect \checkmark	4	A01. 2 $\times 3$ AO3. 2	ALLOW ORA throughout ALLOW ions closer together in MgF_{2} OR further apart in Mgl_{2} DO NOT ALLOW atomic radius ALLOW MgI_{2} is less exothermic than MgF_{2} for LE and hydration enthalpy -as trend 'down the group'. ALLOW less negative/more positive BUT IGNORE is smaller/less
		Total	14		

Question			Answer	Marks	AO element	Guidance
17	(a)		Transition element: Has an ion with an incomplete/partially-filled d sub- shell/d-orbital d-block d sub-shell/d-orbital is being filled/has highest energy OR Electron configurations shown for Sc: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{1} 4 s^{2}$ AND $\mathrm{Zn}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} \checkmark$ Electron configurations of ions $\mathrm{Sc}^{3+}: 1 s^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ AND d sub-shell empty / d orbital(s) empty \checkmark $\mathrm{Zn}^{2+}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 \mathrm{~d}^{10}$ AND d sub-shell full / d-orbitals full \checkmark	4	$\begin{gathered} \mathrm{AO} 1.1 \\ \times 4 \end{gathered}$	FULL ANNOTATIONS MUST BE USED DO NOT ALLOW d shell IGNORE d block IGNORE outer electron electron configurations ALLOW 4s ${ }^{0}$ ALLOW $4 s^{2}$ before 3d, i.e. $4 \mathrm{~s}^{2} 3 \mathrm{~d}^{1} ; 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$ IGNORE other Sc and Zn ions ALLOW ECF for short hand notation. For Sc^{3+}, ALLOW Sc ${ }^{+3}$ OR Sc forms a 3+ ion; For Zn^{2+}, ALLOW Zn^{+2} OR Zn forms a 2+ ion;
	(b)	(i)	Donates two electron pairs (to a metal ion) AND forms two coordinate bonds (to a metal ion) \checkmark	1	$\begin{gathered} \mathrm{AO} 1.1 \\ \mathrm{x} 1 \end{gathered}$	ALLOW lone pairs for electron pairs ALLOW dative (covalent) bonds for coordinate bonds TWO is only needed once if bonds are plural, e.g. Donates 2 electron pairs to form coordinate bonds Donates electron pairs to form 2 coordinate bonds

Question	Answer	Marks	AO element	Guidance
(ii)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Reaches a comprehensive conclusion with most detail and few errors to obtain: the formulae of \mathbf{A} and \mathbf{B} AND ionic equation for ligand substitution AND the 3D structures of B stereoisomers There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion with some detail and some errors for the formula of A OR B AND ionic equation for ligand substitution OR the 3D structures of B stereoisomers There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Obtains the correct formula of A OR B OR 3D structures of \mathbf{B} stereoisomers which are mostly correct. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	AO2. 2 $\times 2$ AO2.6 $\times 2$ AO3.1 $\times 2$	Indicative scientific points: 1. Formula of the hydrated salt A Formula of A : $\mathrm{Cr}_{2} \mathrm{H}_{24} \mathrm{O}_{24} \mathrm{~S}_{3}$ Example of working $\begin{gathered} \mathrm{Cr}: \mathrm{H}: \mathrm{O}: \mathrm{S} \\ \frac{17.10}{52.0}: \frac{3.94}{1.0}: \frac{63.13}{16.0}: \frac{15.83}{32.1} \end{gathered}$ There may be other methods Detail Hydrated salt $=\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O}$ 2. Formula of B and ionic equation Formula of B : $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{-}$ Ionic equation $\begin{aligned} & {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{-}+} \\ & 4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ ALLOW ligands in any order, e.g. $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}$ Detail Use of charges and brackets 3. 3D structures of B stereoisomers

Question

Question		Answer	Marks	AO element	Guidance
(e)	(i)	Lower AND smaller titre \checkmark	1	AO3.4	ALLOW less I_{2} produced / less $\mathrm{Cu}^{\mathbf{2 +}}$ reacts
	(ii)	The same AND burette measures by difference \checkmark	1	AO3.4	ALLOW AW
(f)		Any two of the following: Make up a (standard solution) from Step 2 to a stated volume (e.g. $250 \mathrm{~cm}^{3}$) OR Repeat titrations AND Take mean of concordant/closest titres/ identify anomalies OR lower $\left[\mathrm{S}_{2} \mathrm{O}_{3}\right]^{2-}$ to increase titre volume (to reduce the percentage error). OR higher $\left[\mathrm{S}_{2} \mathrm{O}_{3}\right]^{2-}$ so not to refill the burette. OR Use a 3 dec place balance (to reduce the percentage error).	2	$\begin{gathered} \mathrm{AO} 3.4 \\ \times 2 \end{gathered}$	
		Total	12		

Question			Answer	Marks	AO element	Guidance
19	(a)	(i)	Complete circuit with voltmeter AND labelled salt bridge linking two half-cells \checkmark Cr electrode in Cr^{3+} Pt electrode in MnO_{4}^{-}AND H ${ }^{+}$AND $\mathrm{Mn}^{2+} \checkmark$	3	$\begin{gathered} \text { AO1.2 } \\ \times 3 \end{gathered}$	Half cells can be drawn in either order Half cells must show electrodes dipping into solutions ALLOW small gaps in circuit IGNORE any stated concentrations IGNORE state symbols In salt bridge, ALLOW any stated ion that may be present, e.g. $\mathrm{Cr}^{3+}, \mathrm{MnO}_{4}^{-}, \mathrm{Mn}^{2+}, \mathrm{H}^{+}$
	(a)	(ii)	$5 \mathrm{Cr}+3 \mathrm{MnO}_{4}^{-}+24 \mathrm{H}^{+} \rightarrow 5 \mathrm{Cr}^{3+}+3 \mathrm{Mn}^{2+}+12 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	AO2.6	IGNORE state symbols ALLOW multiples
	(b)	(i)	Mn is oxidised from $+6\left(\right.$ in $\left.\mathrm{MnO}_{4}{ }^{2-}\right)$ to $+7\left(\right.$ in $\left.\mathrm{MnO}_{4}{ }^{-}\right) \checkmark$ Mn is reduced from $+6\left(\right.$ in $\left.\mathrm{MnO}_{4}{ }^{2-}\right)$ to $+4\left(\right.$ in $\left.\mathrm{MnO}_{2}\right) \checkmark$	2	$\begin{gathered} \mathrm{AO} 2.1 \\ \times 2 \end{gathered}$	IGNORE '6' (signs required) ALLOW after number, e.g. 5+ ALLOW 1 mark for correct oxidation numbers but not linked to oxidation/reduction. IGNORE any reference to electron loss/gain (even if wrong)

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	Explanation using E^{o} values (E° of) system $3\left(\mathrm{MnO}_{4}^{-} / \mathrm{MnO}_{4}{ }^{2-}\right.$) is less positive / more negative than system 5 $\left(\mathrm{MnO}_{4}{ }^{2-} / \mathrm{MnO}_{2}\right)^{\checkmark}$ Equilibrium shift related to E° values system $3\left(\mathrm{MnO}_{4}-/ \mathrm{MnO}_{4}{ }^{2-}\right)$ shifts left AND system $5\left(\mathrm{MnO}_{4}{ }^{2-} / \mathrm{MnO}_{2}\right)$ shifts right \checkmark	2	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 2 \end{gathered}$	IGNORE 'lower/higher' ALLOW reverse argument: System 5 more positive than system 3, etc Must be comparative ALLOW response in terms of $E_{\text {cell }}$ $E=(+) 1.14 \mathrm{~V}$ for system 5 - system 3 Shift dependent on systems 3 and 5 correctly identified
(c)	(i)	$\mathrm{H}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \checkmark$	1	AO2.6	ALLOW multiples ALLOW $\mathrm{H}_{2}+2 \mathrm{OH}^{-}-2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ ALLOW equation with equilibrium sign
(c)	(ii)	$(0.40-1.23=)-0.83(V) \checkmark$	1	AO1.2	
(c)	(iii)	Fuel reacts with oxygen/oxidant to give electrical energy/voltage \checkmark	1	A01.1	ALLOW named fuel. e.g. hydrogen $/ \mathrm{H}_{2}$; ethanol; methanol, etc ALLOW fuel cell requires continuous supply of fuel AND oxygen/an oxidant OR fuel cell operates continuously as long as a fuel AND oxygen/an oxidant are added IGNORE 'reactants' 'products' and comments about pollution and efficiency
		Total	11		

Question			Answer	Marks	AO element	Guidance
20	(a)		rate of forwards reaction = rate of backwards reaction OR concentrations/pressure/temperature are constant/do not change	1	AO1.1	DO NOT ALLOW "are the same"
	(b)	(i)	$\begin{aligned} & \Delta G=\Delta H-T \Delta S=-114-(298 \times-0.147) \checkmark \\ & =-70.194\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \\ & \text { AND } \\ & \text { statement of } \Delta G<0 \text { OR } \Delta G \text { is }-\mathrm{ve} \text { OR } \Delta H<T \Delta S \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW -114000 - (298×-147) ALLOW -70 up to calculator value of -70.194 correctly rounded, i.e. -70 OR -70.2 OR -70.19 ALLOW -70000 up to -70194 ($\mathrm{J} \mathrm{mol}^{-1}$) ALLOW ECF for an incorrectly calculated negative value of ΔG linked to feasibility statement IGNORE rounding after 3 SF ORA for comment about - sign required for feasibility
	(b)	(ii)	$776(K) \checkmark$ i.e. Maximum temperature $=\frac{\Delta H}{\Delta S}=\frac{-114}{-0.147}=776(\mathrm{~K})$ 3 SF required (appropriate from supplied data)	1	AO2.2	

Question		Answer				Marks	AO element	Guidance
(c)	(ii)					3	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 3 \end{gathered}$	Mark by COLUMN ALLOW obvious alternatives for greater/smaller/same, e.g. increases/decreases/ more/less
		Change	K_{p}	Equilibrium amount of NO_{2}	Initial rate			
		Temperature increased	smaller	smaller	greater			
		Pressure increase	same	greater	greater			
		Catalyst added	same	same	greater			
			\checkmark	\checkmark	\checkmark			
		Total				11		

Question			Answer	Marks	AO element	Guidance
21	(a)	(i)	(Expt 1 and 2) $\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right.$] halves, ($\left[\mathrm{H}^{+}\right]$constant), AND rate halves AND first order (with respect to $\left.\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]\right)^{\checkmark}$ (Expt 2 and 3) [$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$] quarter AND $\left[\mathrm{H}^{+}\right]$halves, AND rate quarters AND zero order (with respect to $\left[\mathrm{H}^{+}\right]$) \checkmark	2	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 2 \end{gathered}$	ALLOW ORA i.e. (Expt 2 and 1) [$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$] doubles, ($\left[\mathrm{H}^{+}\right]$constant), AND rate doubles AND first order with respect to $\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right.$] ALLOW comparison of Expt 1 and 3: [$\left.\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right] \times 1 / 8$ AND $\left[\mathrm{H}^{+}\right]$halves, AND rate $\times 1 / 8$ AND zero order with respect to $\left[\mathrm{H}^{+}\right]$
	(a)	(ii)	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ as only reactant species in step $1 \checkmark$ Rest of mechanism correct	2	$\begin{gathered} \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	Step 1: $\quad \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{S}+\mathrm{SO}_{3}{ }^{2-}$ Step $2 \quad \mathrm{SO}_{3}{ }^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}$ OR Step $1 \quad \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-} \rightarrow \mathrm{SO}_{2}+\mathrm{SO}^{2-}$ Step $2 \quad \mathrm{SO}^{2-}+2 \mathrm{H}^{+} \rightarrow \mathrm{S}+\mathrm{H}_{2} \mathrm{O}$ Check with Team Leader for other equations
	(b)	(i)	Gradient gradient in range of -5700 to $-6100 \checkmark$ E_{a} calculation $E_{\mathrm{a}}=(-)$ gradient $\times 8.314$ e.g. from $-5900, E_{a}=(+) 49052.6\left(\mathrm{~J} \mathrm{~mol}^{-1}\right) \checkmark$ E_{a} to 3 SF and in $\mathrm{kJ} \mathrm{mol}^{-1} \checkmark$ e.g. $49.1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	3	$\begin{gathered} \mathrm{AO} 2.8 \\ \times 3 \end{gathered}$	FULL ANNOTATIONS MUST BE USED Marks are for intermediate calculations ALLOW ECF from an incorrect gradient ALLOW ECF on missing $\times 10^{-3}$, e.g. ALLOW 2 marks for: gradient $=-5.9$, leading to $E_{a}=49.0526\left(\mathrm{~J} \mathrm{~mol}^{-1}\right)$ AND 0.0491 ($\mathrm{kJ} \mathrm{mol}^{-1}$) DO NOT ALLOW a negative E_{a}

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	In A is intercept at 0 when $1 / T$ OR x axis is $0 \checkmark$	1	AO3.2	
	(iii)	In k $\ln k=-2.59 \checkmark$ Temperature $\begin{aligned} & 1 / T=3.10 \times 10^{-3}\left(\mathrm{~s}^{-1}\right) \\ & T=49.6^{\circ} \mathrm{C} \end{aligned}$	2	AO3.1 AO3. 2	Correct T scores 2 marks ALLOW ECF for 1/T from incorrect InK shown on the graph ALLOW in the range $\begin{aligned} & 1 / T=3.09-3.11\left(\times 10^{-3} \mathrm{~s}^{-1}\right) \\ & \mathrm{T}=48.5 \text { to } 50.6^{\circ} \mathrm{C} \\ & \text { ALLOW } T=50^{\circ} \mathrm{C} \end{aligned}$
		Total	10		

Question			Answer	Marks	AO element	Guidance
22	(a)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 13.15 award 2 marks $\begin{gathered} {[\mathrm{H}+]=\frac{1.00 \times 10^{-14}}{0.140}=7.14 \ldots . \ldots 10^{-14}(\mathrm{~mol}) \checkmark} \\ \mathrm{pH}=-\log \left(7.14 \ldots . . \times 10^{-14}\right)=13.15 \\ 2 \mathrm{DP} \text { required } \end{gathered}$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW ECF providing $\mathrm{pH}>7$ Calculator: $7.142857143 \times 10^{-14}$ ALLOW pOH method $\begin{aligned} & \mathrm{pOH}=-\log (0.14)=0.85 \ldots \ldots . . \\ & \mathrm{pH}=14.00-(0.85 \ldots \ldots)=13.15 \end{aligned}$
	(b)	(i)	$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=1.60 \times \frac{25.0}{1000}=0.04(00)(\mathrm{mol})$ AND $n(\mathrm{NaOH})=1.50 \times \frac{55.0}{1000}=0.0825(\mathrm{~mol})$ $0.04(00) \mathrm{mol} \mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with $0.08(00) \mathrm{mol} \mathrm{NaOH}$ OR $1 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with $2 \mathrm{~mol} \mathrm{NaOH} \checkmark$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW 0.0825>0.08

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	$\begin{aligned} & \begin{aligned} q=m c \Delta T & =80.0 \times 4.18 \times 13.0 \\ & =4347.2(\mathrm{~J}) \text { OR } 4.3472(\mathrm{~kJ}) \\ \Delta H_{1}=(-) & \frac{4.3472}{0.0400}=(-) 108.68 \mathrm{~kJ} \mathrm{~mol}^{-1} \checkmark \end{aligned} \\ & \end{aligned}$	4	$\begin{gathered} \mathrm{AO} 2.4 \\ \times 4 \end{gathered}$	FULL ANNOTATIONS MUST BE USED ALLOW 3 SF up to calculated answer throughout ALLOW ECF from q DO NOT ALLOW division by $n(\mathrm{NaOH})$ ALLOW $\boldsymbol{\Delta}_{\text {neut }} \boldsymbol{H}$ from $\boldsymbol{\Delta H} \boldsymbol{H}_{\mathbf{1}} / \mathbf{2}$ ALLOW alternative methods
(b)	(iii)	The same OR $13^{\circ} \mathrm{C}$ (Double the moles so) double the energy is spread over double the volume	2	$\underset{\times 2}{\mathrm{AO} 3.1}$	ALLOW explanation that uses a calculation based on moles, volumes ALLOW mass for volume

Questi	Answer	Marks	AO element	Guidance
(c)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Reaches a comprehensive conclusion with most detail and few errors for the formation of the buffer AND Calculation of the correct buffer pH AND Correct mass of $\mathrm{N}_{2} \mathrm{O}_{3}$. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion with some detail and some errors for Formation of buffer AND Calculation of the buffer pH OR Formation of buffer AND Mass of $\mathrm{N}_{2} \mathrm{O}_{3}$. OR Calculation of the buffer pH AND Mass of $\mathrm{N}_{2} \mathrm{O}_{3}$. OR Partial explanations of formation of the buffer AND buffer pH AND Mass of $\mathrm{N}_{2} \mathrm{O}_{3}$. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Attempts, with some success, to: Describe formation of buffer OR Calculate buffer pH OR Obtain mass of $\mathrm{N}_{2} \mathrm{O}_{3}$. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	AO1.2 $\times 2$ AO2.6 $\times 2$ AO3.1 $\times 2$	Indicative scientific points may include: 1. Formation of buffer - Acid $/ \mathrm{HNO}_{2}$ is in excess - $\mathrm{HNO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{O}$ - Partial neutralisation of HNO_{2} \rightarrow formation of $\mathrm{NO}_{2}-/ \mathrm{NaNO}_{2}$ - Buffer contains HNO_{2} AND $\mathrm{NO}_{2}-/ \mathrm{NaNO}_{2}$ 2. Calculation of buffer pH - $n\left(\mathrm{HNO}_{2}\right)$ added $=0.0500(\mathrm{~mol})$ - $n(\mathrm{NaOH})$ added $=0.0150(\mathrm{~mol})$ - $n\left(\mathrm{NO}_{2}{ }^{-}\right)$formed $=0.0150(\mathrm{~mol})$ - $n\left(\mathrm{HNO}_{2}\right)$ remaining $=0.0500-0.0150$ $=0.0350(\mathrm{~mol})$ - $K_{a}=10^{-3.34}=4.57 \ldots \times 10^{-4}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ - Concentrations $=\mathrm{mol}\left(\right.$ volume $\left.1 \mathrm{dm}^{3}\right)$ - $\left[\mathrm{H}^{+}\right]=\frac{4.57 \ldots \times 10^{-4} \times 0.0350}{0.0150}$ $=1.0665 \ldots \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ - $\mathrm{pH}=2.97$ - pH to 2 dec places 3. Calculation of mass of $\mathrm{N}_{2} \underline{O}_{3}$ - $1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{~mol} \mathrm{HNO} 2$ $\mathrm{OR} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HNO}_{2}$ - $n\left(\mathrm{HNO}_{2}\right)=0.0500(\mathrm{~mol})$ - $n\left(\mathrm{~N}_{2} \mathrm{O}_{3}\right)=0.0500 / 2=0.0250(\mathrm{~mol})$ - $m\left(\mathrm{~N}_{2} \mathrm{O}_{3}\right)=0.0250 \times 76=1.9(0) \mathrm{g}$
	Total	16		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

