

Wednesday 5 June 2013 – Afternoon

GCSE GATEWAY SCIENCE PHYSICS B

B751/01 Physics modules P1, P2, P3 (Foundation Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour 15 minutes

Candidate forename				Candidate surname			
Centre numb	er			Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do not write in the bar codes.

INFORMATION FOR CANDIDATES

- Your quality of written communication is assessed in questions marked with a pencil ().
- A list of equations can be found on page 2.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 75.
- This document consists of 28 pages. Any blank pages are indicated.

EQUATIONS

energy = mass
$$\times$$
 specific latent heat

efficiency =
$$\frac{\text{useful energy output (} \times 100\%)}{\text{total energy input}}$$

wave speed = frequency × wavelength

average speed =
$$\frac{\text{distance}}{\text{time}}$$

distance = average speed × time

$$s = \frac{(u+v)}{2} \times t$$

$$acceleration = \frac{change in speed}{time taken}$$

force = $mass \times acceleration$

weight = mass × gravitational field strength

work done = force × distance

$$power = \frac{work done}{time}$$

 $power = force \times speed$

$$KE = \frac{1}{2}mv^2$$

momentum = mass × velocity

$$force = \frac{change in momentum}{time}$$

$$GPE = mgh$$

resistance =
$$\frac{\text{voltage}}{\text{current}}$$

$$v = u + at$$

$$v^2 = u^2 + 2as$$

$$s = ut + \frac{1}{2}at^2$$

$$m_1u_1 + m_2u_2 = (m_1 + m_2)v$$

refractive index =
$$\frac{\text{speed of light in vacuum}}{\text{speed of light in medium}}$$

$$magnification = \frac{image\ size}{object\ size}$$

$$I_e = I_b + I_c$$

power loss = $(current)^2 \times resistance$

$$V_pI_p = V_sI_s$$

3 BLANK PAGE

Question 1 begins on page 4

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

SECTION A - Module P1

1 Allan wants to reduce energy losses from his house.

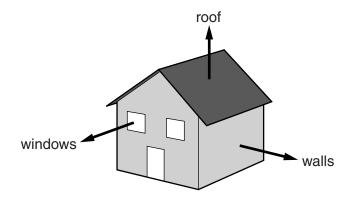
He asks an energy adviser for help.

(a) The adviser uses a thermal imaging camera to produce a photograph of the house.

It is used to indicate where heat energy is lost from the house.

The adviser writes a report for Allan.

He includes a black and white photocopy of the original photograph in his report.


Complete the sentences about the **original** photograph.

The temperature is represented by different

This type of photograph is known as a

[2]

(b) The adviser's report has a diagram which shows where some of the energy is lost.

Energy saving methods are used to reduce energy losses from houses.

Many of these methods use air to reduce energy loss.

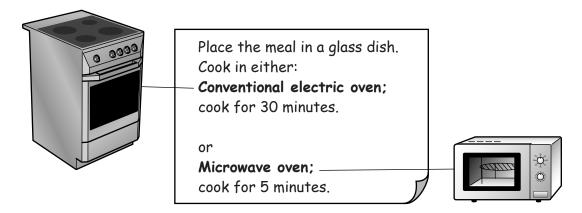
Describe the energy saving methods that could reduce energy losses from Allan's house using air. Explain how air is important.
[31

(c) The energy adviser also suggests that Allan replaces his old central heating boiler.

The Sankey diagram shows energy data for Allan's boiler.

10000J of	useful energy
energy into	that heats
boiler from fuel	Allan's house
	3000 J wasted energy

		3000 J wasted energy
(i)	Calculate the efficiency of Allan's boiler.	
	Give your answer as a percentage.	
	efficiency%	[3]


(ii) The adviser tells Allan that his boiler is in a low efficiency band.

Band	Efficiency range
A	90% and above
B	86% – 90%
	82% – 86%
	78% – 82%
E	74% – 78%
F	70% – 74%
G	below 70%

	[Total: 9]
	[1]
Explain your answer.	
answer	
Is the energy adviser correct?	

2 (a) Damien wants to cook a curry he bought at the supermarket.

He looks at the label on the packaging of the meal.

Cooking using infrared in the conventional electric oven uses 20 times more energy than the microwave oven to cook the meal.

Describe and explain how the meal is cooked in each oven and why they require such different cooking times.

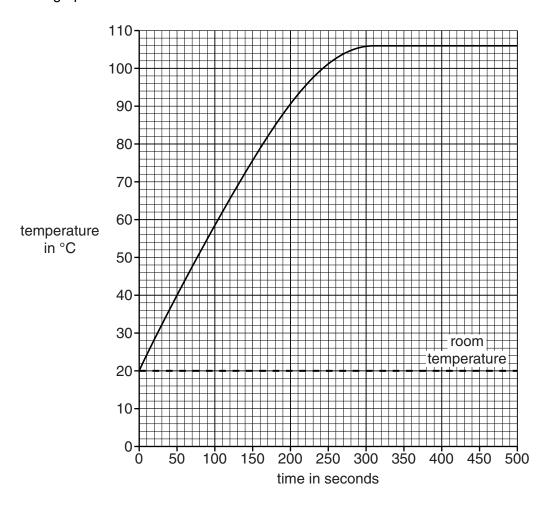
The quality of written communication will be assessed in your answer to this question	
r	61

(b) Microwaves are also used for mobile phone messages.

Damien is worried about his daughter Susie using her mobile phone.

Damien and Susie each make a statement about using mobile phones.

Damien: "I think that using mobile phones is harmful. They cause some types of cancer."


Susie: "Results of a study that ran for a number of years were published in 2011. It showed no clear link between using mobile phones and increased cancer risk."

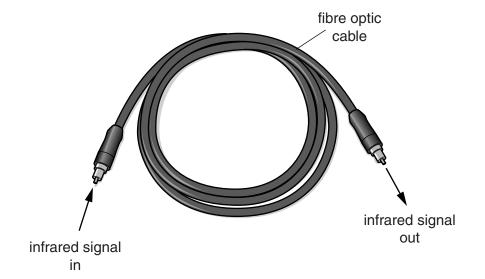
One of these statements is based on scientific evidence. The other statement is not.

Explain why.	
	[2]
	[Total: 8]

3 Layla heats a beaker containing a liquid and records its temperature.

Look at the graph of her results.

(a) Layla concludes that the liquid boiled during the experiment.


	How does the graph show this?	
		. [1]
(b)	What is the boiling point of the liquid?	
	answer°C.	[1]

[Total: 2]

4 Reeta is learning about different types of waves.

Electromagnetic waves are used for communication.

(a) (i) Infrared waves can transmit signals from one end of a fibre optic cable to the other.

		How does the infrared signal pass from one end of the cable to the other end?	
			[2]
	(ii)	Infrared radiation can also be used for cooking.	
		Write down one other use of infrared radiation.	
			[1]
(b)	A ca	able is not always needed for communications.	
	Writ	te down one advantage of not needing a cable for a device used for communications.	
			[1]

1	~)	There are two	tunge	of cianale	Heart	f∩r tranc	emission
١	\sim	There are two	types	oi signais	uscu	ioi tians	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

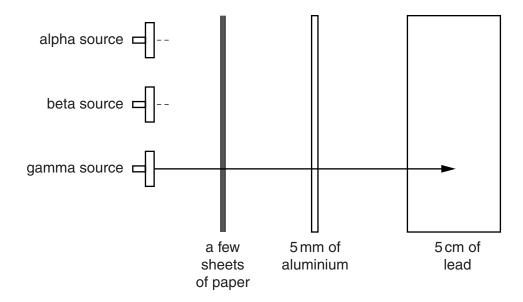
These types of signal are analogue and digital.

Reeta draws this diagram of one type of signal.

1								
]
Exp	lain v	vhich	type of si	ignal Reeta's	diagram shov	ws a n	Id why it is not the c	other type.
								[2

[Total: 6]

13 BLANK PAGE

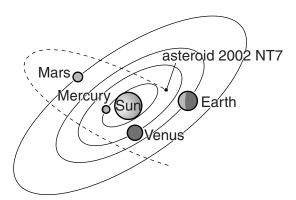

Question 5 begins on page 14

PLEASE DO NOT WRITE ON THIS PAGE

SECTION B – Module P2

- **5** This question is about nuclear radiation.
 - (a) Complete the diagram to show the penetrating power of alpha and beta radiation.

Gamma radiation has been completed for you.



(b)	Describe how to handle radioactive materials safely.			
				[2]
(c)	Nuclear radiation can be beneficial or harmful.			
	Tick (✓) the correct box next to each statement to show i	f the radiation is	beneficial or har	mful.
		beneficial	harmful	
	Alpha radiation used in smoke detectors.			
	Gamma radiation used as a tracer.			
	Radiation causing ionisation in healthy body cells.			
	Radioactive waste from nuclear power stations.			[2]

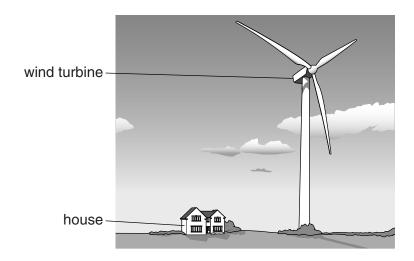
[1]

[Total: 5]

6 The asteroid named 2002 NT7 is a Near Earth Object (NEO).

Asteroid 2002 NT7 has a low probability of colliding with the Earth in the year 2019.

It has a diameter of 2km.

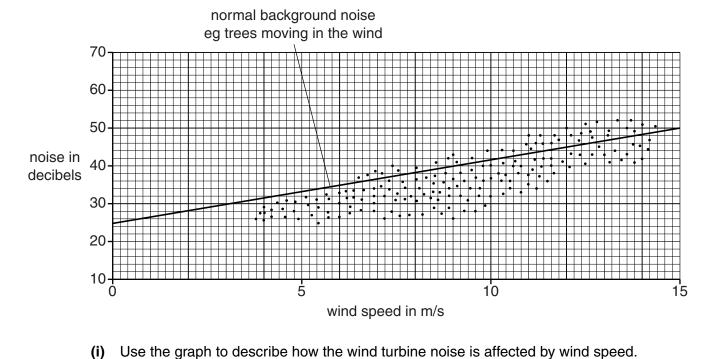

Describe why scientists are making detailed observations of this asteroid and describe what could happen if it collides with Earth.

The quality of written communication will be assessed in your answer to this question.
[6]

[Total: 6]

7 The Sun's energy produces convection currents that cause wind.

Wind is used to drive turbines.

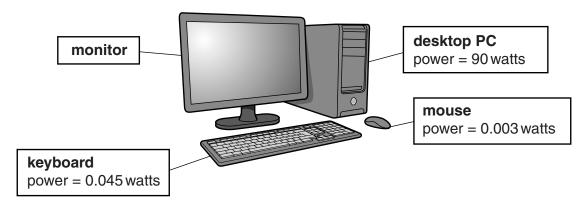


(a)	Describe the advantages of wind turbines compared to a conventional coal power station.
	[2

(b) The people in the house are concerned about noise from the turbine.

Look at the graph.

Each dot shows a measurement of the noise from the wind turbine.



`,	
	[1
(ii)	The mean wind speed in this area is 5 m/s.
	The maximum wind speed in this area is usually less than 15 m/s.
	Explain, using data from the graph, why the people in the house do not normally need to worry about the noise from the turbine.
	[2

[Total: 5]

8 Kyle has a wireless computing system.

Look at the information in the diagram.

(a)	The monitor plugs into a 230V supply and uses a current of 0.5 A.	
	Calculate the power of the monitor.	
	answerW	[2]
(b)	The four parts of the wireless computing system cost different amounts to use.	
	Complete the list to show the cost of using the four parts of the computing system.	
	One has been done for you.	
	most expensive to use monitor	
	least expensive to use	[1]

(c) Increasing the use of technology has increased energy consumption.

This may have contributed to global warming.

People have different views about how to **reduce** global warming.

Fatima thinks that it would help if everyone changed to using low energy light bulbs.

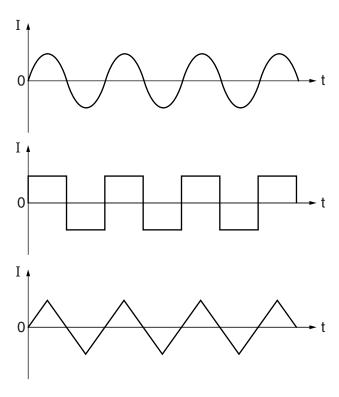
Sara thinks the problem is so big that it does not matter what individuals do.

Claire thinks we could all reduce energy use by walking instead of driving cars.

Identify two the environ	o opposing ment.	views and	describe	what long	term (effects	each	view	could	have or
										[2]
									Γ	Total: 5

9 Electricity is generated in power stations.

total energy input from coal = 500 000 MJ		٦	useful energy output
coal	steam turbine furnace	generator	= 170 000 MJ


4	(۵)	Calculate the	officiono	of this	00110	atation
- (a)	Calculate in	eniciency	OI IIIIS	power	Station

efficiency	[2]

- (b) The generator in the power station produces alternating current (AC).
 - (i) Name the type of current a battery produces.

.....[1]

(ii) Look at the three different current-time graphs.

Describe why all the graphs show alternating currents.

[1]

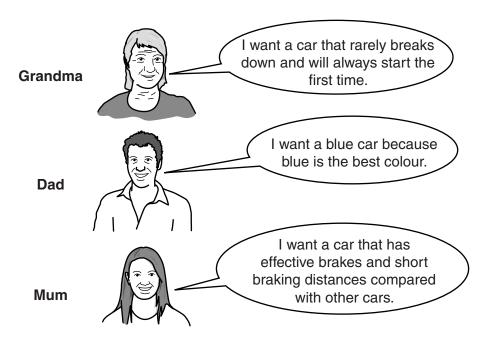
[Total: 4]

SECTION C - Module P3

- 10 This question is about choosing the best car to buy.
 - (a) Look at the information about these cars.

Car	Power in kW	Engine capacity in litres	Mass of car in kg	Fuel consumption in km per litre
Audi	367	6.3	2050	23
BMW	300	6.0	2050	25
Jaguar	375	5.0	1900	25
Rolls Royce	340	6.8	2700	18
Volvo	225	3.0	1850	29

(i) Which car has the highest power output?


Choose from:

Rolls Royce Volvo Audi BMW Jaguar (ii) This high-powered car does **not** have the worst fuel consumption. Use the data to suggest and explain a reason why.[2] (iii) Which car has the **best** fuel consumption? Choose from: Audi **BMW** Jaguar Rolls Royce Volvo Suggest reasons why this is the case.

.....[3]

(b) Jennie's family cannot decide which car to buy.

Read what they are saying.

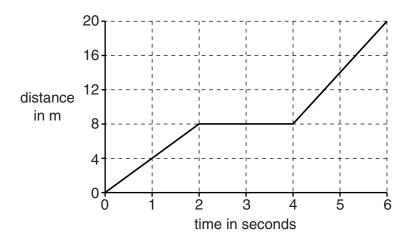
Some parts of what they are saying can be supported by scientific evidence. Other parts are only views, claims or opinions.

(i) Whose statement can be **completely** supported by scientific evidence?

Choose from:

	Grandma	Dad	Mum	
				[1]
(ii)	Whose statement can be part	ly supported by so	cientific evidence?	
	Choose from:			
	Grandma	Dad	Mum	
				[1]

(c) Scientists test new cars using crash dummies to see how safe they are.


They give each car a safety rating. They share their findings with other scientists.

	(i)	Why do other scientists want to know about the findings of these tests?
		[1]
	(ii)	Scientists sometimes change these safety ratings some years after the cars have been tested.
		Suggest reasons why they do this.
		[2]
(d)	Son	ne car safety features absorb energy if the car crashes.
	Writ	e about two of these features.
		[2]

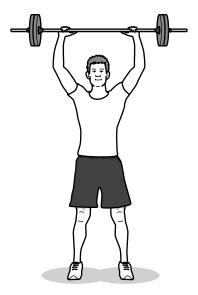
[Total: 13]

11 Daisy uses her remote controlled model car.

Look at the simple distance-time graph for this car.

Describe and compare, in detail, the distances moved, and the speeds of her car during the 6-second journey.

The quality of written communication will be assessed in your answer to this question.
[6]
 [V]


[Total: 6]

12 Hossein is a weightlifter.

His best lift in training is a bar with a mass of 250kg.

He does 5000 J of work on the bar with a mass of 250kg when he lifts it.

The gravitational field strength (g) on Earth is 10 N/kg.

height lifted =	m [3				
weight =					
Calculate the weight of this 250kg mass, and how high Hossein lifts the bar.					

[Total: 3]

13 Four friends test drive the same new car.

They are interested in how economical the car is.

Look at the fuel consumptions for each driver.

Test driver	Fuel used in litres	Distance travelled on test drive in km	Fuel consumption in km per litre
Sally	3.0	30	10
Lindsey	2.5	30	
lan	3.0	36	12
Karen	5.0	40	8

(a)	Calculate the fuel consumption for Lindsey's test drive.	
	answer km per litre	[1]
(b)	Suggest reasons why Ian and Karen get different fuel consumptions for the same car.	
		[2]
		al: 3]
	LIOI	aı. J

END OF QUESTION PAPER

27 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2013