AQA

Please write clearly in block capitals.

Centre number \square Candidate number

Surname
Forename(s)
Candidate signature \qquad

Level 2 Certificate FURTHER MATHEMATICS

Paper 1 Non-Calculator

Friday 14 June 2019

Materials

For this paper you must have:

- mathematical instruments.

You must not use a calculator.

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

Afternoon

- The maximum mark for this paper is 70 .
- You may ask for more answer paper, graph paper and tracing paper.

These must be tagged securely to this answer book.

- The marks for questions are shown in brackets.

For Examiner's Use	
Pages	Mark
3	
$4-5$	
$6-7$	
$8-9$	
$10-11$	
$12-13$	
$14-15$	
$16-17$	
$18-19$	
$20-21$	
TOTAL	

Formulae Sheet

Volume of sphere $=\frac{4}{3} \pi r^{3}$
Surface area of sphere $=4 \pi r^{2}$

Volume of cone $=\frac{1}{3} \pi r^{2} h$
Curved surface area of cone $=\pi r l$

In any triangle $A B C$
Area of triangle $=\frac{1}{2} a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

The Quadratic Equation

The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are given by $x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

Trigonometric Identities

$\tan \theta \equiv \frac{\sin \theta}{\cos \theta} \quad \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$

Answer all questions in the spaces provided.

1 A straight line passes through the points ($-2,11$) and (1, 2)
Work out the equation of the line.
Give your answer in the form $y=m x+c$
\qquad
\qquad
\qquad
\qquad
\qquad

Answer \qquad

Turn over for the next question

2 Write $\frac{5}{6 a}+\frac{a}{4}$ as a single fraction.
Give your answer in its simplest form.

3	Work out the smallest integer value of x that satisfies the inequality	$8-5 x<26$

Answer

\qquad
$4 \quad p(x-1)+2(3 x+k) \equiv 4(x+2) \quad$ where p and k are integers.
Work out the values of p and k.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Answer $p=$ \qquad , $k=$ \qquad
\qquad
$5 \quad$ Solve $\quad \sqrt[3]{(2 \sqrt{x}-10)}=2$
\qquad
\qquad
\qquad
\qquad
\qquad
$x=$ \qquad

6 The transformation matrix $\left(\begin{array}{cc}2 a & b \\ -b & -a\end{array}\right)$ maps the point (3, 4) onto the point (8, -7) Work out the values of a and b.
\qquad , $b=$ \qquad
$7 \quad$ A function is given by $\quad \mathrm{f}(x)=-2 x \quad-1 \leqslant x<0$

$$
\begin{array}{ll}
=x(4-x) & 0 \leqslant x<3 \\
=2 x-3 & 3 \leqslant x \leqslant 4
\end{array}
$$

Draw the graph of $y=\mathrm{f}(x)$ on the grid.

$8 \quad A B C$ is a straight line.
A is the point $(-4,5)$
C is the point $(20,-7)$
$A B: B C=5: 3$

Work out the coordinates of B.
\qquad , \qquad)

Circle the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$
$3 x^{2}-10 x$
$6 x^{2}-20 x$

10 Factorise fully $6 x^{2}+26 x y-20 y^{2}$

Answer

\qquad

Turn over for the next question

11 A cone has base radius $r \mathrm{~cm}$, perpendicular height $h \mathrm{~cm}$ and slant height $l \mathrm{~cm}$ The curved surface area is $60 \pi \mathrm{~cm}^{2}$ $l=3 r$

Work out the value of h.
Give your answer in the form $a \sqrt{10}$ where a is an integer greater than 1
You must show your working.
\qquad

Answer \qquad

12 A curve has the equation $y=x^{3}+a x^{2}-7 \quad$ where a is a constant.
The gradient of the curve when $x=4$ is twice the gradient of the curve when $x=-1$
Work out the value of a.
You must show your working.
\qquad

Answer \qquad

Turn over for the next question

13 Prove that $(3 x+5)^{2}-5 x(x+10) \geqslant 0 \quad$ for all values of x.
\qquad

14 Here are two transformations.
A Rotation 90° clockwise about the origin.
B Reflection in the line $y=x$
Use matrix multiplication to work out the single matrix which represents the combined transformation A followed by B.

Answer \qquad

15 Here is a sketch graph of $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$

You are given that $\cos 36^{\circ}=0.8090$

Solve $\cos x=-0.8090$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
\qquad
\qquad
\qquad
\qquad

Answer \qquad

16 Rationalise the denominator and simplify fully $\frac{21-11 \sqrt{5}}{3-\sqrt{5}}$
\qquad

Answer

Turn over for the next question

$17 \quad A, B$ and C are points on the circumference of a circle, centre O. $E C D$ is a tangent to the circle at C.
Angle $A O B=2 x+46^{\circ}$
Angle $O B C=37^{\circ}$
Angle $A C D=3 x$

Not drawn
accurately

Work out the value of x.
\qquad

Answer
degrees

Turn over for the next question
$18 \quad A D E F$ is a trapezium.
$A B C D$ is a straight line.
$B C E F$ is a square of side $\sqrt{6} \mathrm{~cm}$

Not drawn accurately

18 (a) Show that $A B=\sqrt{2} \mathrm{~cm}$
[1 mark]
\qquad
\qquad
\qquad
\qquad

18 (b) Show that $D E=2 \sqrt{6} \mathrm{~cm}$
\qquad
\qquad
\qquad
\qquad

18 (c) Work out the perimeter of the trapezium $A D E F$.
Give your answer in the form $t \sqrt{2}+w \sqrt{6} \quad$ where t and w are integers.
You must show your working.
\qquad cm
$19 \mathrm{f}(x)=\frac{x-3}{2 x}$
Solve $\mathrm{f}(x+1)-\mathrm{f}(2 x)=0.5$
You must show your working.
\qquad

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	\qquad
	\qquad

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third-party copyright material are published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2019 AQA and its licensors. All rights reserved.

