

Friday 19 June 2015 - Morning

GCSE TWENTY FIRST CENTURY SCIENCE PHYSICS A/FURTHER ADDITIONAL SCIENCE A

A183/02 Module P7 (Higher Tier)

Candidates answer on the Question Paper. A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour

Candidate forename					Candidate surname				
Centre numb	er					Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer all the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Do **not** write in the bar codes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil ().
- A list of useful relationships is printed on pages 2 and 3.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- This document consists of 16 pages. Any blank pages are indicated.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful relationships

The Earth in the Universe

Sustainable energy

energy transferred = power
$$\times$$
 time
power = voltage \times current
efficiency = $\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$

Explaining motion

$$speed = \frac{distance\ travelled}{time\ taken}$$

$$acceleration = \frac{change\ in\ velocity}{time\ taken}$$

$$momentum = mass\ \times\ velocity$$

$$change\ of\ momentum = resultant\ force\ \times\ time\ for\ which\ it\ acts$$

$$work\ done\ by\ a\ force\ =\ force\ \times\ distance\ moved\ in\ the\ direction\ of\ the\ force$$

$$amount\ of\ energy\ transferred\ =\ work\ done$$

$$change\ in\ gravitational\ potential\ energy\ =\ weight\ \times\ vertical\ height\ difference$$

$$kinetic\ energy\ =\ \frac{1}{2}\ \times\ mass\ \times\ [velocity]^2$$

Electric circuits

$$\begin{aligned} & power = voltage \times current \\ & resistance = \frac{voltage}{current} \\ & \frac{voltage \ across \ primary \ coil}{voltage \ across \ secondary \ coil} = \frac{number \ of \ turns \ in \ primary \ coil}{number \ of \ turns \ in \ secondary \ coil} \end{aligned}$$

Radioactive materials

energy = mass
$$\times$$
 [speed of light in a vacuum]²

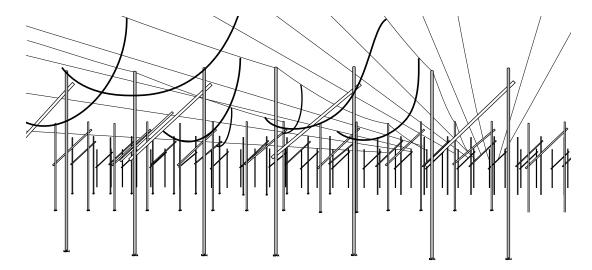
Observing the Universe

lens power =
$$\frac{1}{\text{focal length}}$$

$$magnification = \frac{focal length of objective lens}{focal length of eyepiece lens}$$

speed of recession = Hubble constant
$$\times$$
 distance

pressure
$$\times$$
 volume = constant


$$\frac{pressure}{temperature} = constant$$

$$\frac{\text{volume}}{\text{temperature}} = \text{constant}$$

energy = mass
$$\times$$
 [speed of light in a vacuum]²

Answer all the questions.

1 The picture shows a radio telescope.

In 1967 a scientist used a radio telescope and recorded a regular series of pulses, one every 1.33 seconds, coming from the sky. She took more readings over a number of nights. The signal came from a location that moved across the sky with the stars.

Observations made with another telescope confirmed the pulses existed, with the same location in the sky and with the same timing.

(a)	Why did the scientist repeat the readings over a number of nights?				
	[1				
(b)	At first the scientist thought the signal might be a fault in the radio telescope.				
	How could the scientist be sure this was not the explanation for the pulses?				
	[1				

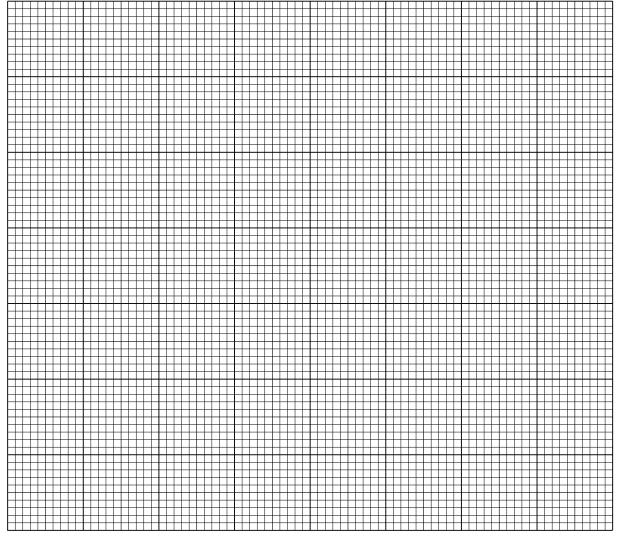
	(i)	Would it be a good idea to send a signal back to the alien civilisation? You should justify your answer by considering the possible advantages disadvantages.	
	(ii)	What evidence of extraterrestrial life have scientists found?	
	(iii)	Over the last few years scientists have found objects in space that they think make much more likely that extraterrestrial life exists.	
		What objects have scientists found?	
			[1]
(d)		e discovery of other sources giving off the pulses at different intervals led to a different involved spinning neutron stars.	rent
	How	v are neutron stars formed?	
			[2]
		[Total	l: 91

2	Most major astronomical observatories are in very isolated places on high mountains.
	(a) Which two of the following are examples of places with major optical and infrared astronomical

(a)	Which two of the following are examples of places with major optical and infrared astronomical	
	observatories?	

Put (rings) around the **two** correct answers.

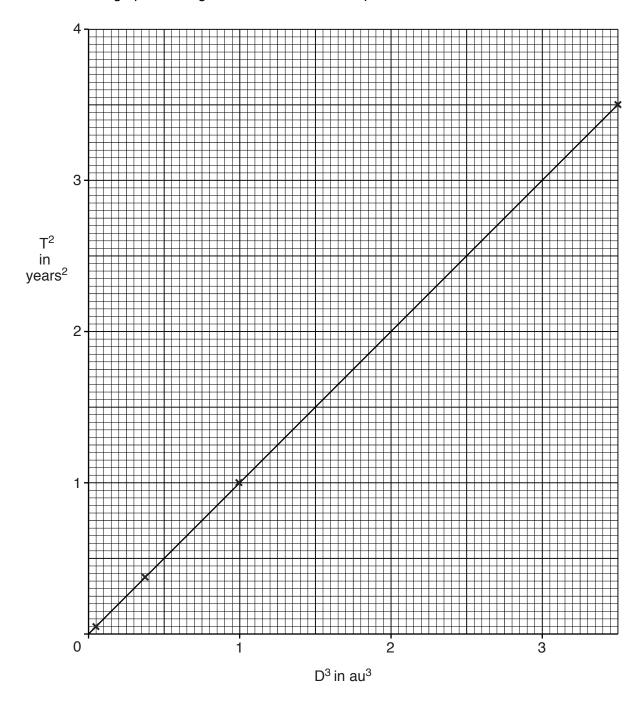
Can	ada	Canary Islands	Chile	London	The North Sea
					[2]
(b)	advantag	-		•	ou should consider both st, with a justification, an
		The quality of written of	communication wil	l be assessed in yo	our answer.
					[6]


[Total: 8]

3 Johannes Kepler found a relationship between the distance from the Sun and the time it takes the planets to orbit the Sun.

The table shows data for some of the planets.

	Distance (D) from Sun in astronomical units (au)	Time (T) to orbit the Sun in years
Mercury	0.39	0.24
Venus	0.72	0.62
Earth	1.00	1.00
Mars	1.52	1.88


(a) Plot a graph of this data with distance (D) on the horizontal axis. Include a line of best fit passing through the origin.

© OCR 2015

(b) Kepler said that T^2 was directly proportional to D^3 .

This is a graph of T^2 against D^3 for the first four planets.

(i)	Does this graph support Kepler's relationship?	
	Justify your answer.	

(ii) The asteroid Geographos has a mean orbital distance (D) from the Sun of 1.25 au. Use the graph on the opposite page to find the time (T) it takes for the asteroid Geographos to orbit the Sun.

time to orbit Sunyears [3]

(c) (i) Complete the table for Jupiter. Give your answers to **three** significant figures.

	Distance (D) from Sun in astronomical units (au)	D ³ in au ³	Time (T) to orbit the Sun in years	T ² in years ²
Mercury	0.39	0.05	0.24	0.06
Venus	0.72	0.37	0.62	0.38
Earth	1.00	1.00	1.00	1.00
Mars	1.52	3.50	1.88	3.53
Jupiter	5.22		11.90	
Saturn	9.54	868.00	29.50	870.00

(ii) Show that Saturn also fits Kepler's relationship.

[2]

[2]

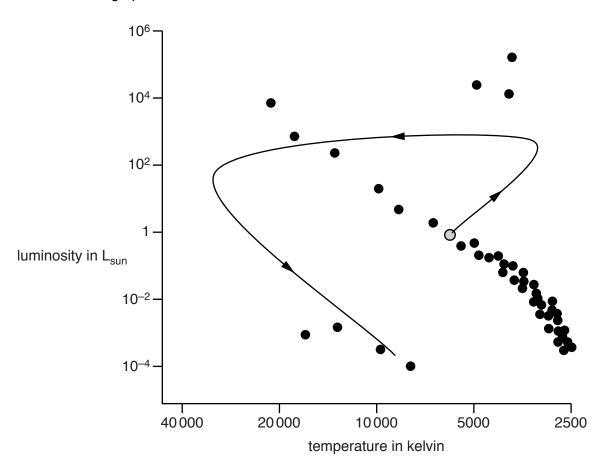
(d) Here are some data about the Sun, Moon and stars.

	Distance from Earth	Time to travel once across the sky
Moon	380 000 km	27 days
Sun	150 000 000 km	24 hours
Stars	more than 3 light years	23 hours 56 minutes

John says that there must be a causal link between the distance and the time. s John correct?	
Discuss John's conclusion.	
	[2]
[To	otal: 15]

4 Astronomers sometimes refer to the 'ladder of distance' when talking about measuring the distance to astronomical objects.

		Hubble law
	Cepheid variables	
parallax		
	increasing distance	


Describe the **three** methods of measuring astronomical distances and explain how the Hubble law depends upon the other methods.

D.	cation will be assessed in yo	
	 	[0]

[Total: 6]

5 This graph is a Hertzsprung–Russell diagram.

The track on the graph shows most of the life of a star like the Sun.

- (a) On the diagram, draw the track of a star with a much higher mass than the Sun. [3]
- **(b)** Complete the following sentences about stars. Use words from the list.

carbon	helium	hyd	rogen	iron		uranium	ì		
Stars with a low	mass do no	t fuse elemer	nts with nucle	ei bigger	than				
These nuclei wi	ll fuse when	the star is a	a red giant t	o form .			and	son	ne
heavier nuclei lik	ke nitrogen a	ınd oxygen.							
When a high	mass star	becomes a	supernova	it has	a core	that is	made	up	of
								[3]

(c)	Scie star	entists can use spectral lir	nes in th	e light fro	om a star	to detect th	ne chemica	al elements ir	n the
	(i)	Which statements explain Put ticks (✓) in the boxes					ctra?		
		Electrons fuse with	protons	to emit e	energy.				
		Electrons move bety	ween en	nergy lev	els in an a	itom.			
		Photons turn into el	ectrons	in atoms	3.				
		A photon of a specit	ic energ	gy is emi	tted.				
		The energy of the p of the photon.	hoton de	etermine	s the freq	uency			
		The colour of the ele	ectron d	epends	upon the p	photon.			
		An atom is ionised v	vhen an	electror	n is remov	ed.			
	(ii)	Here is an energy level of	liagram	for an at	om.				[3]
			13						
			11						
		energy in arbitrary units	8						
		What are possible energ a spectral line?	' 0 y values		tons that c	ould be ab	sorbed by	this atom to	form
		Put rings around your a	answers						
		5 8	3	19	21	32	!		
									[2]

(d)	Mos	st of the energy produced by a star is from fusion in the core of the star.	
	(i)	Name the two main ways that energy is transported to the surface of the star.	
		1	
		2	[2]
	(ii)	What is the name of the part of the Sun that emits radiation from its surface?	
			[1]
	(iii)	The temperature at the Sun's surface has been measured as 5778 K. What is this temperature in Celsius?	
		temperature =	°C [2]
		[То	otal: 16]

6	A star	forms	from a	cloud	of das
U	A Stai	1011113	non a	CIUUU	u uas

Use the relationships between temperature, pressure and volume of a gas to explain how the conditions needed for the fusion of hydrogen come about during the formation of a star.

<i>A</i> 7	The quality of written communication will be assessed in your answer.
	[6]
	[Total: 6]

END OF QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

 $For queries \ or \ further \ information \ please \ contact \ the \ Copyright \ Team, \ First \ Floor, 9 \ Hills \ Road, \ Cambridge \ CB2 \ 1GE.$

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2015