(*)	V N(11 2 ²)		
(i)	$ X \sim N(11,3^{2}) $ $ P(X < 10) = P \left(Z < \frac{10 - 11}{3} \right) $	M1 for standardizing	
	= P(Z < -0.333)	M1 for use of tables with their <i>z</i> -value	
	$= \Phi(-0.333) = 1 - \Phi(0.333)$ $= 1 - 0.6304 = 0.3696$	M1 dep for correct tail A1CAO (must include use of differences)	4
(ii)	P(3 of 8 less than ten) $= {8 \choose 3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for coefficient M1 for 0.3696 ³ × 0.6304 ⁵ A1 FT (min 2sf)	3
(iii)	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^{2} = npq = 100 \times 0.3696 \times 0.6304 = 23.30$ $Y \sim N(36.96,23.30)$ $P(Y \ge 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$ $= P(Z > 2.598) = 1 - \Phi(2.598) = 1 - 0.9953$	M1 for Normal approximation with correct (FT) parameters B1 for continuity corr. M1 for standardizing and using correct tail	4
	= 0.0047	A1 CAO (FT 50.5 or omitted CC)	I
(iv)	H ₀ : $\mu = 11$; H ₁ : $\mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for H_0 , as seen. B1 for H_1 , as seen. B1 for definition of μ	3
(v)	Test statistic = $\frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6}$ = 2.23	M1 must include $\sqrt{25}$ A1 (FT their μ)	
	5% level 1 tailed critical value of $z=1.645$ 2.23 > 1.645, so significant. There is sufficient evidence to reject H_0	B1 for 1.645 M1 for sensible comparison leading to a conclusion	
	It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	A1 for conclusion in words in context (FT their <i>μ</i>)	5
			19
	1	•	

(i)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 for ranking (allow all ranks reversed) M1 for d^2 A1 for $\Sigma d^2 = 68$ M1 for method for r_s A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
(ii)			
	H_0 : no association between x and y	B1 for H_0 , in context.	
	H_1 : positive association between x and y	B1 for $H_{1,}$ in context.	
	Looking for positive association (one–tail test): critical value at 5% level is 0.5636	NB $H_0 H_1 \underline{not}$ ito ρ	
	Since 0.588> 0.5636, there is sufficient evidence to reject	B1 for ± 0.5636	
	H_0 , i.e. conclude that there is positive association between true weight x and estimated weight y .	M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words & in context, f.t. their r_s and sensible cv	5
(iii)	$\Sigma x = 31.63, \ \Sigma y = 33.1, \ \Sigma x^2 = 101.92, \ \Sigma y^2 = 112.61, \ \Sigma xy = 106.51.$		
	$S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 106.51 - \frac{1}{10} \times 31.63 \times 33.1$	M1 for method for S_{xy}	
	= 1.8147	M1 for method for at	
	$(S_1, S_2, S_3, S_4, S_4, S_4, S_4, S_4, S_4, S_4, S_4$	least one of S_{xx} or S_{yy}	
	$S_{xx} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 101.92 - \frac{1}{10} \times 31.63^2 = 1.8743$	A1 for at least one of S_{xy} , S_{xx} , S_{yy} correct.	
	$S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 112.61 - \frac{1}{10} \times 33.1^2 = 3.049$	M1 for structure of <i>r</i>	5
	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{1.8147}{\sqrt{1.8743 \times 3.049}} = 0.759$	A1 (awrt 0.76)	
(iv)	Use of the PMCC is better since it takes into account	E1 for has values, not	
	not just the ranking but the actual value of the weights. Thus it has more information than Spearman's and will	just ranks E1 for contains more	
	therefore provide a more discriminatory test.	information	
	Critical value for rho = 0.5494	Allow alternatives. B1 for a cv	4
	PMCC is very highly significant whereas Spearman's is	E1 dep	
	only just significant.		19
	<u> </u>		

	(A) $P(X = 1) = 0.1712 - 0.0408 = 0.1304$	M1 for tables	
(i)	$_{32}3.2^{1}$	A1 (2 s.f. WWW)	
	$OR = e^{-3.2} \frac{3.2^1}{1!} = 0.1304$		
	(B) $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8946$	M1	
	= 0.1054	A1	4
(ii)	(A) $\lambda = 3.2 \div 5 = 0.64$	B1 for mean (SOI)	
		M1 for probability	
	$P(X=1) = e^{-0.64} \frac{0.64^{1}}{1!} = 0.3375$	A1	
	(B) P(exactly one in each of 5 mins)	D1 (FT) (1 (2 (5))	4
	$= 0.3375^5 = 0.004379$	B1 (FT to at least 2 s.f.)	
(iii)	Mean no. of calls in 1 hour = $12 \times 3.2 = 38.4$	D1 for Normal approx	
	Using Normal approx. to the Poisson,	B1 for Normal approx. with correct parameters	
	$X \sim N(38.4, 38.4)$	(SOI)	
	$P(X \le 45.5) = P\left(Z \le \frac{45.5 - 38.4}{\sqrt{38.4}}\right)$	B1 for continuity corr.	4
	$P(X \le 43.3) = P\left(Z \le \frac{1}{\sqrt{38.4}}\right)$	·	
	= $P(Z \le 1.146)$ = $\Phi(1.146)$ = 0.874 (3 s.f.)	M1 for probability using correct tail	
		A1 CAO, (but FT 44.5 or omitted CC)	
(iv)	(A) Suitable arguments for/against each assumption:	E1, E1	
		,	
	(B) Suitable arguments for/against each assumption:	E1, E1	4
			16

	association be ne association				B1 (in context)
E	xpected	Sex		Row	
	Apecica	Male	Female	totals	
1	Under 40	81.84	42.16	124	
Age group	40 – 49	73.92	38.08	112	
	50 and over	42.24	21.76	64	
Colu	ımn totals	198	102	300	M1 A1 for expected values (to 2dp)
Cont	ribution to	Se	ex		varues (to 2ap)
tes	t statistic	Male	Female		M1 for valid attempt at (O–E) ² /E
	Under 40	1.713	3.325		
Age group	40 – 49	0.059	0.114		M1dep for summation 6
group	50 and over	2.255	4.378		
$X^2 = 1$				Ī	A1CAO for X^2
$\Lambda = 1$	1.04				4
Result	o Ξ_2^2 I value at 5% I is significant s some associa			and sex.	B1 for 2 deg of f B1 CAO for cv B1 dep on their cv & X^2 E1 (conclusion in context)
B1or fir					
40 age be expe	The analysis suggests that there are more females in the under 40 age group and less in the 50 and over age group than would be expected if there were no association. The reverse is true for males. Thus these data do support the suggestion.				
$n = 300$ $EITHE$ $\lambda = np$ Using t $= 1$ OR : us	fal(300, 0.03) 0, $p = 0.03$ so R: use Poisson = 9 ables: $P(X \ge 1 - 0.8030 = 0$ the Normal approximation of the properties of the	B1 CAO EITHER: B1 for Poisson B1dep for Poisson(9) M1 for using tables to find $1 - P(X \le 11)$ A1 OR: B1 for Normal B1dep for parameters M1 for using tables with correct tail (cc not required for M1)			
					A1 1