Surname	Other	names			
Edexcel GCE	Centre Number	Candidate Number			
Chemistry Advanced Subsidiary Unit 1: The Core Principles of Chemistry					
Friday 13 January 2012 – Time: 1 hour 30 minute		Paper Reference 6CH01/01			

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

- 1 A molecule is
 - A a group of atoms bonded by ionic bonds.
 - **B** a group of atoms bonded by covalent bonds.
 - \square C a group of ions bonded by covalent bonds.
 - **D** a group of atoms bonded by metallic bonds.

(Total for Question 1 = 1 mark)

2 The relative atomic mass is defined as

- \blacksquare A the mass of an atom of an element relative to 1/12 the mass of a carbon-12 atom.
- \square **B** the mass of an atom of an element relative to the mass of a hydrogen atom.
- \square C the average mass of an element relative to 1/12 the mass of a carbon atom.
- **D** the average mass of an atom of an element relative to 1/12 the mass of a carbon-12 atom.

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

24 1 3
24 dm ³ at room
of identical entities as
ope.
om temperature and
for Question 3 = 1 mark)
per dm ³ or
ge. Glucose has a dm ³ of blood would
for Question 4 = 1 mark)
ne reaction
d)
(II) sulfate solution ure was 47.6 K. e enthalpy change for

6 The enthalpy change of atomization of iodine is the value of ΔH for the process

 $\square \mathbf{A} \quad \mathbf{I}_2(\mathbf{s}) \to \mathbf{I}_2(\mathbf{g})$

 $\boxtimes \mathbf{B} \quad I_2(s) \to 2I(g)$

 \square **C** $I_2(g) \rightarrow 2I(g)$

 $\square \mathbf{D} \quad \sqrt[1]{2}I_2(s) \to I(g)$

(Total for Question 6 = 1 mark)

7 The enthalpy change for the reaction

 $C(s, graphite) + \frac{1}{2}O_2(g) \rightarrow CO(g)$

cannot be measured directly since some carbon dioxide is always formed in the reaction. It can be calculated using Hess's Law and the enthalpy changes of combustion of graphite and of carbon monoxide.

 $C(s, graphite) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -394 \text{ kJ mol}^{-1}$

 $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g) \quad \Delta H = -283 \text{ kJ mol}^{-1}$

The enthalpy change for the reaction of graphite with oxygen to give carbon monoxide is

- \mathbf{X} **A** -677 kJ mol⁻¹
- \blacksquare **B** +111 kJ mol⁻¹
- \square C -111 kJ mol⁻¹
- \square **D** +677 kJ mol⁻¹

(Total for Question 7 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

8	The mo	plar enthalpy change of combustion of some alkanes is given below in kJ mol ⁻¹ .
		$\begin{array}{rrrr} C_{3}H_{8} & -2219 \\ C_{4}H_{10} & -2877 \\ C_{5}H_{12} & -3509 \\ C_{6}H_{14} & -4163 \end{array}$
	Anothe The alk	ar alkane was found to have an enthalpy change of combustion of -6125 kJ mol ⁻¹ .
	A	$C_{7}H_{16}$
	B	C_8H_{18}
	C	C_9H_{20}
	D 🛛	$C_{10}H_{22}$
		(Total for Question 8 = 1 mark)
9		nean C—H bond enthalpy is $+x$, which of the following represents a process with alpy change of $+4x$?
	A	$C(g) + 4H(g) \rightarrow CH_4(g)$
	B	$CH_4(g) \rightarrow C(g) + 4H(g)$
	C	$CH_4(g) \rightarrow C(s, \text{ graphite}) + 2H_2(g)$
	D 🛛	$C(s, graphite) + 2H_2(g) \rightarrow CH_4(g)$
		(Total for Question 9 = 1 mark)
10	The fire	st eight ionization energies of an element are (in kJ mol ⁻¹):
		789, 1577, 3232, 4356, 16091, 19785, 23787, 29253.
	The ele	ement is in
	🖾 A	Group 1
	B	Group 2
	C	Group 3
	D 🛛	Group 4
		(Total for Question 10 = 1 mark)

3 9 2 9 5 A 0 6 2

Ρ

		e highest atom econo	omy by mas	ss?			
$ C Cl_2 + H_2O → 2HCl + ½O_2 $ $ D PbO_2 → PbO + ½O_2 $ $ (Total for Question 12 = 1 mark) $ $ Li^+ 0.074 F^- 0.133 \\ Ca^{2+} 0.100 Cl^- 0.180 \\ O^2- 0.140 \\ S^{2-} 0.185 $ (a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure. (1) $ A LiF \\ B LiCl \\ C CaO \\ D CaS $ (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) $ A LiF \\ B Li_2O \\ C CaO $	🖾 A	$NaNO_3 \rightarrow NaNO_2$	$_{2} + \frac{1}{2}O_{2}$				
$ D PbO_2 → PbO + ½O_2 $ (Total for Question 12 = 1 mark) 13 The ionic radii in nm of some ions are given below. $ Li^{\dagger} 0.074 P^{-} 0.133 C^{-} 0.180 O^{2-} 0.140 S^{2-} 0.185 $ (a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure. (1) A LiF B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B LiCl (1) A LiF B LiCl (1) (1) (1) (1) (1) (1) (2) (2) (3) (4) (5) (5) (5) (6) (7	B	$H_2O_2 \rightarrow H_2O + \frac{1}{2}$	O ₂				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	$Cl_2 + H_2O \rightarrow 2HO$	$Cl + \frac{1}{2}O_2$				
 13 The ionic radii in nm of some ions are given below. Li⁺ 0.074 F⁻ 0.133 Ca²⁺ 0.100 Cl⁻ 0.180 O²⁻ 0.140 S²⁻ 0.185 (a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure. (1) A LiF B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li2O C CaO 	D 🛛	$PbO_2 \rightarrow PbO + \frac{1}{2}$	O_2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					(To	otal for Question	12 = 1 mark)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 The ion	nic radii in nm of so	ome ions are	e given belo	W.		
 Q²⁻ 0.140 S²⁻ 0.185 (a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure. (1) A LiF B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li2 (1) A LiF (1) A LiF (1) C CaO (1) 						0.133	
 S²⁻ 0.185 (a) Which of the following compounds has the most exothermic lattice energy? They all have the same crystal structure. (1) A LiF B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li2O C CaO 			Ca^{2+}	0.100			
 have the same crystal structure. (1) A LiF B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li₂O C CaO 							
 B LiCl C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li₂O C CaO 				ls has the m	ost exother	mic lattice energy	
 C CaO D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? A LiF B Li₂O C CaO 	A	LiF					
 ☑ D CaS (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) ☑ A LiF ☑ B Li₂O ☑ C CaO 	B	LiCl					
 (b) Which of the following compounds will show the greatest difference between the experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) ▲ LiF ▲ LiF ▲ Li₂O ▲ C CaO 	C	CaO					
 experimental (Born-Haber) lattice energy and that calculated from a purely ionic model? (1) A LiF B Li₂O C CaO 	D 🛛	CaS					
	exp	perimental (Born-Ha			•		ionic
$\square \mathbf{B} \text{Li}_2\text{O}$ $\square \mathbf{C} \text{CaO}$	A	LiF					(-)
C CaO							
		CaO					
\square D CaS	C						
(Total for Question 13 = 2 marks)		CaS					
		CaS			(Tot	al for Ouestion 1	3 = 2 marks)

B C	Petroleum \rightarrow reforming \rightarrow fractional distillation \rightarrow cracking \rightarrow petrol.			
C				
	Petroleum \rightarrow cracking \rightarrow reforming \rightarrow fractional distillation \rightarrow petrol.			
D 🛛	Petroleum \rightarrow fractional distillation \rightarrow cracking \rightarrow reforming \rightarrow petrol.			
	(Total for Question 14 = 1 mark)			
	reaction between ethene and bromine, the bromine molecule acts as an ophile.			
	$CH_2 = CH_2 + Br_2 \rightarrow BrCH_2CH_2Br$			
Whicl	n of the following statements is true?			
A	Ethene acts as a nucleophile because it is polar.			
B B	Ethene acts as a nucleophile because it can donate a pair of electrons to bromine.			
C	Ethene is not a nucleophile in this reaction.			
D 🛛	Ethene acts as a nucleophile because it donates a single electron to bromine.			
	(Total for Question 15 = 1 mark)			
16 Name	the alkene shown below.			
16 Name				
16 Name	the alkene shown below. H_3C $C=C$ $CH_2CH_2CH_3$			
16 Name	the alkene shown below.			
I6 Name ⊠ A	the alkene shown below. H_3C $C=C$ $CH_2CH_2CH_3$			
	the alkene shown below. $H_{3}C \qquad CH_{2}CH_{2}CH_{3}$ $H \qquad CH_{2}CH_{3}$			
A	the alkene shown below. $H_{3}C \qquad CH_{2}CH_{2}CH_{3}$ $H \qquad CH_{2}CH_{3}$ <i>Z</i> -4-ethylhex-4-ene			
A B	the alkene shown below. $H_{3}C \qquad CH_{2}CH_{2}CH_{3}$ $C=C \qquad CH_{2}CH_{3}$ $Z-4-ethylhex-4-ene$ $E-3-ethylhex-2-ene$			

	ene, CH ₃ CH=CH ₂ , is reacted with aqueous acidified potassium manganate(VII)
	anic product is
A	CH ₃ CH(OH)CH ₂ OH
B	CH ₃ CH(OH)CH ₃
C	HOCH ₂ CH ₂ CH ₂ OH
D	CH ₃ CH ₂ CH ₂ OH
	(Total for Question 17 = 1 mark)
10.11	
	hany compounds have the formula C_5H_{12} ?
A	1
B	2
C	3
D	4
	(Total for Question 18 = 1 mark)
relative	canic compound reacts with chlorine in the presence of ultraviolet light. The e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism?
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)
relative compor A B C	e molecular mass of the product has increased by 34.5 compared with the original und. What is the reaction mechanism? Free radical substitution Electrophilic substitution Nucleophilic substitution Free radical addition (Total for Question 19 = 1 mark)

ſ

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

20 (a) An impure sample of sodium hydrogencarbonate, NaHCO₃, of mass 0.227 g, was reacted with an excess of hydrochloric acid. The volume of carbon dioxide evolved was measured at room temperature and pressure and found to be 58.4 cm³.

 $NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2$

The molar volume of any gas at the temperature and pressure of the experiment is $24 \text{ dm}^3 \text{ mol}^{-1}$. The molar mass of sodium hydrogenearbonate is 84 g mol^{-1} .

(i) Calculate the number of moles of carbon dioxide given off.

(1)

(ii) Calculate the mass of sodium hydrogencarbonate present in the impure sample.

(2)

(iii) Calculate the percentage purity of the sodium hydrogenearbonate. Give your answer to two significant figures.

(2)

(b) (i)	The total error in reading the gas syringe is ± 0.4 cm ³ . Calculate the percentage error in measuring the gas volume of 58.4 cm ³ .	(1)
(ii)	Suggest why the carbon dioxide should not be collected over water in this experiment.	(1)
	(Total for Question 20 = 7 mar	·ks)
		11 Turn over

21 (a) On strong heating, calcium carbonate decomposes to calcium oxide and carbon dioxide:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Owing to the conditions under which the reaction occurs, it is not possible to measure the enthalpy change directly.

An indirect method employs the enthalpy changes when calcium carbonate and calcium oxide are neutralized with hydrochloric acid.

(i) Write the equation for the reaction of calcium carbonate with hydrochloric acid. State symbols are **not** required.

 $[\Delta H_1$ is the enthalpy change for this reaction]

(1)

 ΔH_1

(ii) The reaction of calcium oxide with hydrochloric acid is

$$CaO(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l)$$
 ΔH_2

Use the equations in parts (i) and (ii) to complete the Hess's Law cycle below to show how you could calculate the enthalpy change for the decomposition of calcium carbonate, $\Delta H_{\text{reaction}}$. Label the arrows in your cycle.

(3)

$$\begin{tabular}{|c|c|c|c|} \hline CaCO_3(s) & & & & \\ \hline CaCO_3(s) & & & & \\ \hline CaO(s) + CO_2(g) & & \\ \hline \end{array}$$

(iii) Complete the expression for $\Delta H_{\text{reaction}}$ in terms of ΔH_1 and ΔH_2 .	(1)
$\Delta H_{\text{reaction}} =$	
(b) Suggest two reasons why the value obtained by carrying out these two exp and using the equation gives a value different to the data booklet value for decomposition reaction of calcium carbonate.	
-	
2	
(Total for Question 2	1 = 7 marks)

P 3 9 2 9 5 A 0 1 4 2 4

BLANK PAGE

(i) Ionization of the sample.	(1)
	(1)
(ii) Acceleration of the ions.	
	(1)
(iii) Deflection of the ions.	(1)
b) State how you could find the molecular mass of a substance from its mass spectrum.	(1)
E) Living things take up the radioactive isotope carbon-14 from the atmosphere. In recent years a particular linen cloth was shown, using mass spectrometry, to have been made from flax grown in the early 14th century. Suggest how mass	
spectrometry can be used to estimate the age of the cloth.	(2)
(Total for Question 22 = 6 mar	rks)

Element	Na	Mg	Al	Si	P (white)	S (monoclinic)	Cl	Ar
Aelting emperature / K	371	922	933	1683	317	392	172	84
(a) Explain why magnesium.	the meltin	ng tempera	ature of so	odium is v	ery much	less than that of	(3	5)
(b) Explain why white phospl		ng tempera	ature of si	licon is ve	ery much g	greater than that	of	
		ng tempera	ature of si	licon is ve	ery much g	greater than that	of (3)
		ng tempera	ature of si	licon is ve	ery much g	greater than that))
		ng tempera	ature of si	licon is ve	ery much g	greater than that))
		ng tempera	ature of si	licon is ve	ery much g	greater than that))
		ng tempera	ature of si	licon is ve	ery much g	greater than that))
		ng tempera	ature of si	licon is ve	ery much g	greater than that))
		ng tempera	ature of si	licon is ve	ery much g	greater than that))

(c) Explain why the melting temperature of argon is the lowest of all the elements of Period 3.	of (1)
(d) Explain why magnesium is a good conductor of electricity whereas sulfur is a non-conductor.	
	(2)
(Total for Question $23 = 9$	marks)
(Total for Question 23 = 9	marks)
(Total for Question 23 = 9	marks)
(Total for Question 23 = 9	9 marks)
(Total for Question 23 = 9	9 marks)

24 (a) Briefly describe an experiment, with a diagram of the apparatus you would use, which shows that there are oppositely charged ions in copper(II) chromate(VI), CuCrO₄. Describe what you would expect to see.

Formula of ion	Colour
Cu ²⁺ (aq)	blue
CrO ₄ ^{2–} (aq)	yellow

Diagram

(b) The ions in an ionic lattice are held together by an **overall** force of attraction.

(i) Describe the forces of attraction in an ionic lattice.

(1)

(4)

(ii) Suggest two forces of repulsion which exist in an ionic lattice.

(2)

ons and the size of the cations, why thi	S
	(2)
O^{2-} would differ from that of Mg ⁺ O ⁻ .	(1)
(Total for Question 24 = 15 ma	urks)
	^{2−} would differ from that of Mg ⁺ O [−] .

25 Chloroethane can be made from ethane an ultraviolet light. The equation for the rea	nd chlorine in the gas phase in the presence of action is	
CH ₃ CH ₃ +	$Cl_2 \rightarrow CH_3CH_2Cl + HCl$	
(a) Complete the mechanism for the react	tion. Two of the steps have been given for you.	(4)
Initiation:	$Cl_2 \rightarrow 2Cl$ ·	
Propagation (two steps)		
(i)		
(ii)		
Termination (three steps)		
	$2\text{Cl} \cdot \rightarrow \text{Cl}_2$	
(iii)		
(iv)		
	loroethane. Give the structural formula and included in your mechanism for part (a), which	
		(2)
Formula		
Name		

(i) Explain the difference between ha	azard and risk	
	azaru and risk.	(2)
	ould use in this experiment to minim	ise the risk,
other than the use of a laborator	ry coat and safety goggles.	(1)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)
	(Total for Question	25 = 9 marks)

26 (a) The alkenes have the general formula C _n H _{2n} . However, a compound with this general formula is not necessarily an alkene. Suggest why this is so.	(1)
(b) Give the equation, using skeletal formulae, for the reaction of propene with each of the following.	f
(i) Hydrogen:	(1)
(ii) Hydrogen bromide to form the major product:	(2)
(c) Give the mechanism for the reaction of propene with hydrogen bromide, HBr, to form the major product.	(3)
(Total for Question 26 = 7 m TOTAL FOR SECTION B = 60 MA TOTAL FOR PAPER = 80 MA	RKS

P 3 9 2 9 5 A 0 2 3 2 4

	0 (8)	(18) He	2 2	20.2	Ne	neon	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xa	xenon	54	[222]	Rn	radon 86																																																																																				
	7 0		4 (<i>11</i>)	19.0	L	fluorine			chlorine a	-		bromine kr 35	-		iodine ×		[210] [astatine 1		en reported		175	Lu	lutetium 71	[257]	Lr I	lawrencium 103																																																																											
	9		(16)	16.0	0	Ę	8 32.1		sulfur c 16	79.0		E			6		[209]		polonium a 84		16 have be icated		173		ytterbium li 70	[254]		102																																																																											
	ъ	5 (15)	14.0	z	nitrogen			phosphorus 15	74.9		υ	121.8	9		51	209.0		bismuth p 83	bers 112-1		bers 112-1		lbers 112-1' Ily authenti		nbers 112-1 Illy authent			nbers 112-1 Illy authent			Elements with atomic numbers 112-116 have been reported but not fully authenticated			ibers 112-11 Ily authenti			bers 112-11 Ily authenti		bers 112-11 .ly authenti	bers 112-1 [°] .ly authenti	bers 112-1 ⁻ .ly authent	bers 112-1 Jy authent	bers 112-1 .ly authent	bers 112-1 .ly authent	bers 112-1 .ly authent	bers 112-1 [°] ly authenti	oers 112-11 ly authenti		bers 112-11 ly authenti		bers 112-11 y authenti		oers 112-11 ly authenti	oers 112-1		bers 112-11 ly authenti		bers 112-1		bers 112-1		oers 112-11 ly authenti		oers 112-11 ly authenti		oers 112-11 ly authenti		bers 112-11 y authenti		bers 112-11 .y authenti		bers 112-11 y authenti		bers 112-11 ly authenti	oers 112-1 [.] ly authent	oers 112-1 [.] ly authent	oers 112-1 [°] ly authenti		oers 112-11 ly authenti		oers 112-11 ly authenti		bers 112-11 y authenti		bers 112-11 ly authenti	bers 112-1	bers 112-1 ly authent	169		thulium y 69	[256]		101										
	4		(14)	12.0	U	carbon	0 28.1	Si	silicon p 14	72.6	e	germanium	118 7	ŝ		50	207.2		lead 82		atomic num		167	ŗ	erbium 68	[253]	Fa																																																																												
	m		(13)	10.8	8	boron	c	AI	aluminium 13	69.7		gallium	114 8	<u> </u>	indium	49	204.4		thallium 81		ients with a		165	٩	holmium 67			_																																																																											
ents							•		(12)	65.4	Zn	zinc	112 4		cadmium	48	200.6	Hg	mercury 80		Elerr		163	Dy	dysprosium 66	[251]		cautornium einsteinium 98 99																																																																											
Elem									(11)	63.5	Cu	copper	107.9	AG	Ag silver	47	197.0		gold 79	[272]	Rg	111	159	Tb	terbium 65	[245]	BK	97																																																																											
le or									(10)	58.7	ż	nickel	20 106 4		palladium	46	195.1	Ł	platinum 78	[271]	Mt Ds Rg	110	157	PG	gadolinium 64	[247]	E U	96																																																																											
c lad									(6)	58.9	ပိ	cobalt	2/ 107 9	Ч а	rhodium	45	192.2	L	iridium 77	[268]	Mt	109	152		europium 63	[243]	Am	americium 95																																																																											
I ne Periodic Tadie of Elements		1.0 hvdrogen	1						(8)	55.8	Fe		101 1		ruthenium	44	190.2	õ	osmium 76	[277]	Hs	108	150	Sm	samarium 62		Pu	puutonluin 94																																																																											
ле Ре									(2)	54.9	٩N	Шã	[68]	2 F	tec		186.2		rhenium 75	_	Bh		[147]	Pm	i promethium 61	[237]	Np	93																																																																											
=				mass	lodi	Jumber			(9)	52.0	ა	chromium	24 95 9	Ŵ	molvbdenum	42	183.8	3	tungsten 74	[266]	Sg	106	144	PN	Ę		D	92																																																																											
			Key	relative atomic	relative atomic mass	relative atomic	relative atomic	relative atomic	atomic symbol	atomic (proton) number	(procent) -		(2)	50.9	>	vanadium	6 C7	NP.	niobium	41	180.9	Ta	tantalum 73	[262]	Db		141	ΡΓ	praseodymium 59	[231]	Pa	protactinum 91																																																																							
									atc				(4)	47.9	Ϊ	titanium	91 2	7r	LI zirconium	40	178.5		hafnium 72	[261]	Rf	104	140	e U	cerium 58	232	Th Th	06																																																																							
									(3)	45.0	Sc	scandium	2 I Z) } >	T vttrium	39	138.9	La*	lanthanum 57	[227]	Ac*	89		es		-																																																																													
	2		(2)	0.6	Be	beryllium	4 74 3	Mg	magnesium 12	40.1	Ca	calcium	87.6	2; 7	strontium	38	137.3	Ba	barium 56	[226]	Ra	88		* Lanthanide series	* Actinide series																																																																														
	-		(1)	6.9	:-	lithium	23 O	Na	sodium 11	39.1	×	potassium	85.5	2 2 2 2	rubidium	37	132.9	പ	caesium 55	[223]	Fr francium	87		* Lantl	* Actin																																																																														

The Periodic Table of Elements

P 3 9 2 9 5 A 0 2 4 2 4