Surname	Other 1	names
Pearson Edexcel GCE	Centre Number	Candidate Number
Chemist	rv	
Advanced Unit 5: General Prin Metals and C	ciples of Chemistry II Organic Nitrogen Che moptic assessment)	

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

P45073RA ©2015 Pearson Education Ltd. 6/6/6/6/1/2/

Turn over 🕨

SECTION A

	Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.					
1	Which	of the following is a redox reaction?				
	A	$Cr_2O_7^{2-} + 2OH^- \rightarrow 2CrO_4^{2-} + H_2O$				
	B	$[Cu(H_2O)_6]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 6H_2O$				
	🖾 C	$4OH^{-} + 4MnO_{4}^{-} \longrightarrow 4MnO_{4}^{2-} + 2H_{2}O + O_{2}$				
	D	$[Fe(H_2O)_6]^{3+} + 3OH^- \rightarrow [Fe(H_2O)_3(OH)_3] + 3H_2O$				
		(Total for Question 1 = 1 mark)				
2	The o	vidation state of nickel is not +2 in				
-		[Ni(CO) ₄]				
		$[Ni(H_2O)_4(OH)_2]$				
		$[Ni(NH_3)_6]^{2+}$				
		[Ni(CN) ₄] ²⁻				
		(Total for Question 2 = 1 mark)				
3	Which correc	of the statements about a standard hydrogen electrode, for which $E^{\ominus} = 0$ V, is t?				
	A	A suitable solution for use in the electrode is hydrochloric acid with a concentration of 0.1 mol dm ⁻³ .				
	B	The pressure of the hydrogen has no effect on the value of E^{\ominus} .				
	🖾 C	The metal used in the electrode is platinum.				
	D	The temperature is 273 K.				
		(Total for Question 3 = 1 mark)				
	Use th	is space for any rough working. Anything you write in this space will gain no credit.				

			System	E [⇔] / V	
		H+($(aq) + e^{-!!!!!!} \Rightarrow !\frac{1}{2}H_2(q)$	0.00	
		Ag	+(aq) + e ^{_!!!} ⇔!Ag(s)	+0.80	
		Ag	²⁺ (aq) + e ^{_!!} ⇔!Ag ⁺ (aq)	+1.98	
	From tl	hese data it ma	ay be deduced that, under standa	ard conditions,	
	🛛 A	Ag is a stronge	er reducing agent than H_2 .		
	B	Ag ²⁺ ions are s	tronger oxidizing agents than H	ions.	
	🖾 C	Ag⁺ ions will d	lisproportionate.		
	D	Ag ⁺ ions will re	eact with H⁺ ions.		
				(Total for Question 4 =	= 1 mark)
5			ates whether the cell reaction is g is a correct statement about E_c		e.
5	Which	of the followin		ell?	e.
5	Which	of the followin E_{cell} is directly	g is a correct statement about E_c	_{ell} ?	e.
5	Which	of the followin E_{cell} is directly E_{cell} is directly	g is a correct statement about E_{c} proportional to the equilibrium c	$_{\rm ell}$? constant. nge of the system, $\Delta S_{\rm system}$.	e.
5	Which A B C 	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly	g is a correct statement about E_c proportional to the equilibrium c proportional to the entropy char	constant. age of the system, ΔS_{system} . change, ΔS_{total} .	
5	Which A B C 	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly	g is a correct statement about E_{c} proportional to the equilibrium oproportional to the entropy char proportional to the total entropy	constant. age of the system, ΔS_{system} . change, ΔS_{total} .	S _{total} .
5	Which A B C 	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly	g is a correct statement about E_{c} proportional to the equilibrium oproportional to the entropy char proportional to the total entropy	constant. age of the system, ΔS_{system} . T change, ΔS_{total} . The total entropy change, ΔS_{total} .	S _{total} .
	Which A B C D 	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of Ir	g is a correct statement about E_{c} proportional to the equilibrium oproportional to the entropy char proportional to the total entropy	constant. age of the system, ΔS_{system} . T change, ΔS_{total} . The total entropy change, ΔS_{total} . (Total for Question 5 =	S _{total} .
	Which A B C D 	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of Ir	g is a correct statement about E_c proportional to the equilibrium of proportional to the entropy char proportional to the total entropy on E_{cell} is directly proportional to th	$_{\rm ell}$? constant. age of the system, $\Delta S_{\rm system}$. change, $\Delta S_{\rm total}$. ne total entropy change, $\Delta S_{\rm total}$ (Total for Question 5 =	S _{total} .
	Which A A B C C D In a me	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of Ir ethanol fuel cel	g is a correct statement about E_{c} proportional to the equilibrium of proportional to the entropy char proportional to the total entropy on E_{cell} is directly proportional to the II, the following half-reaction occ	constant. age of the system, ΔS_{system} . change, ΔS_{total} . the total entropy change, ΔS_{total} . (Total for Question 5 = urs $+ CO_2(g) + 6e^{-1}$	S _{total} .
	Which Image: A matrix of the state Image: A matrix of the state	of the followin E_{cell} is directly E_{cell} the value of Ir	g is a correct statement about E_c proportional to the equilibrium of proportional to the entropy char proportional to the total entropy in E_{cell} is directly proportional to the ll, the following half-reaction occ $CH_3OH(I) + H_2O(I) \rightarrow 6H^+(aq)$	constant. age of the system, ΔS_{system} . change, ΔS_{total} . the total entropy change, ΔS_{total} . (Total for Question 5 = urs $+ CO_2(g) + 6e^{-1}$	S _{total} .
	Which A A B C C D In a me The hal A	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of lr ethanol fuel cel If-reaction occu $H_2(g) + O_2(g)$	g is a correct statement about E_c proportional to the equilibrium of proportional to the entropy char proportional to the total entropy in E_{cell} is directly proportional to the II, the following half-reaction occ $CH_3OH(I) + H_2O(I) \rightarrow 6H^+(aq)$ urring in the other half of the fue	constant. age of the system, ΔS_{system} . change, ΔS_{total} . the total entropy change, ΔS_{total} . (Total for Question 5 = urs $+ CO_2(g) + 6e^{-1}$	S _{total} .
	Which Image: A and a constraint of a constraint	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of lr ethanol fuel cel If-reaction occu $H_2(g) + O_2(g)$	g is a correct statement about E_c proportional to the equilibrium of proportional to the entropy char proportional to the total entropy in E_{cell} is directly proportional to the ll, the following half-reaction occ $CH_3OH(l) + H_2O(l) \rightarrow 6H^+(aq)$ urring in the other half of the fue $+ 2e^- \rightarrow 2OH^-(aq)$	constant. age of the system, ΔS_{system} . T change, ΔS_{total} . The total entropy change, ΔS_{total} . (Total for Question 5 = urs $P + CO_2(g) + 6e^{-1}$ I cell is	S _{total} .
6	Which A A B C C D In a me The ha A A A B C C C C C C C C C C C C C C C C	of the followin E_{cell} is directly E_{cell} is directly E_{cell} is directly The value of lr ethanol fuel cel If-reaction occu $H_2(g) + O_2(g)$ $2H^+(aq) + \frac{1}{2}C$	g is a correct statement about E_c proportional to the equilibrium of proportional to the entropy char proportional to the total entropy in E_{cell} is directly proportional to the E_{cell} is directly proportional to the $CH_3OH(I) + H_2O(I) \rightarrow 6H^+(aq)$ urring in the other half of the fue $+ 2e^- \rightarrow 2OH^-(aq)$ $O_2(g) + 2e^- \rightarrow H_2O(I)$	$_{ell}$? constant. age of the system, ΔS_{system} . change, ΔS_{total} . ne total entropy change, ΔS (Total for Question 5 = (Total for Question 5 = (Total for Quest	S _{total} .

7	Which	of the following statements about fuel cells is not true?
-		Reactants must constantly be fed into the cell when it is in use.
	B	Fuel cells are 100% efficient.
		Fuel cells convert chemical energy directly into electrical energy.
	⊠ D	Fuel cells produce electricity more efficiently than a diesel generator.
		(Total for Question 7 = 1 mark)
8		er(II) ions combine with three molecules of 1,2-diaminoethane, $NH_2CH_2CH_2NH_2$, n a complex ion.
	A bon	d angle, N — Cu — N, in this complex is
	A	120°
	B	109.5°
	🛛 C	107°
	D	90°
		(Total for Question 8 = 1 mark)
9		of the following does not have a central metal ion having six bonds and an ion state of +2?
	A	$[Cu(C_2O_4)_3]^{4-}$
	B	[Co(CN) ₅ (H ₂ O)] ³⁻
	🖾 C	[Fe(CN) ₆] ³⁻
	D	$[Zn(OH)_4(H_2O)_2]^{2-}$
		(Total for Question 9 = 1 mark)
10	The re	
		$[Fe(H_2O)_6]^{2+} + H_2O \rightarrow [Fe(H_2O)_5(OH)]^+ + H_3O^+$
		xample of
	A	oxidation.
	B	reduction.
	C	ligand exchange.
	D	acid-base behaviour.
		(Total for Question 10 = 1 mark)
	4	$\begin{array}{ $

11	 Hydrated crystals of a compound have the formula CrCl₃(H₂O)₆. A solution containing one mole of the compound reacts with two moles of silver nitrate to form two moles of silver chloride. The complex chromium ion in the compound is most likely to be 						
	🖾 A	A $[Cr(H_2O)_3Cl_3]^{3+}$					
	B	B $[Cr(H_2O)_4Cl_2]^+$					
	\Box [Cr(H ₂ O) ₅ Cl] ²⁺						
	⊠ D	$[Cr(H_2O)_6]^{3+}$					
		(Total for Question 11 = 1 mark)					
12		erogeneous catalyst is often preferred to a homogenous catalyst for an rial process because					
	Δ	it is easily separated from the products.					
	B	it has empty d-orbitals.					
	🖾 C	it has more than one oxidation state.					
	⊠ D	it cannot be poisoned.					
		(Total for Question 12 = 1 mark)					
13		reaction of benzene with chloromethane, aluminium chloride is added because ts with					
	🖾 A	benzene to produce an electrophile.					
	B	benzene to produce a nucleophile.					
	C chloromethane to produce a nucleophile.						
	⊠ D	chloromethane to produce an electrophile.					
		(Total for Question 13 = 1 mark)					
14	14 The reaction below can be catalysed by either Fe ²⁺ ions or Fe ³⁺ ions.						
		$S_2O_8^{2-}(aq) + 2I^{-}(aq) \rightarrow 2SO_4^{2-}(aq) + I_2(aq)$					
	This is because						
	Α 🖾	both reactants can react with Fe ²⁺ ions.					
	B	both reactants can react with Fe ³⁺ ions.					
	⊠ C	$S_2O_8^{2-}$ ions can be oxidized by Fe ³⁺ ions and l ⁻ ions can be reduced by Fe ²⁺ ions.					
	D 🛛	$S_2O_8^{2-}$ ions can be reduced by Fe ²⁺ ions and I ⁻ ions can be oxidized by Fe ³⁺ ions.					
	(Total for Question 14 = 1 mark)						

15 The	e er	nthalpy changes of the reactions below are similar. The equilibrium constants				
for		e two reactions are K_1 and K_2 respectively.				
		action 1 $[Cu(H_2O)_6]^{2+}(aq) + EDTA^{4-}(aq) \Longrightarrow [Cu(EDTA)]^{2-}(aq) + 6H_2O(I)$				
		action 2 $[Cu(H_2O)_6]^{2+}(aq) + 4Cl^{-}(aq) \implies [CuCl_4]^{2-}(aq) + 6H_2O(l)$				
The	The value of K_1 is greater than K_2 because					
\mathbf{X}	A ΔS_{system} is much more positive in Reaction 1.					
\mathbf{X}	В	$\Delta S_{\text{surroundings}}$ is much more positive in Reaction 1.				
\times	C	the EDTA ^{₄-} is more highly charged than Cl ⁻ .				
\times	D	a lower concentration of EDTA ^{4−} is needed than Cl ⁻ .				
		(Total for Question 15 = 1 mark)				
C ₆ ł	H₅C	of the following reacts with benzene under suitable conditions to form OC_6H_5 ?				
\times		C₀H₅CHO				
\times	В	C ₆ H₅COOH				
\times		$C_6H_5CH_2OH$				
\times	D	C₀H₅COCI				
		(Total for Question 16 = 1 mark)				
47 D						
	nze A	ne is converted to benzenesulfonic acid, C ₆ H ₅ SO ₃ H, by reaction with sulfuric(IV) acid, H ₂ SO ₃ .				
	B	sulfuric(VI) acid, H_2SO_4 .				
X	C	sulfur dioxide dissolved in sulfuric(IV) acid.				
\times	D	sulfur trioxide dissolved in sulfuric(VI) acid.				
		(Total for Question 17 = 1 mark)				
Use	e th	is space for any rough working. Anything you write in this space will gain no credit.				

18 Benzene reacts with chlorine to produce 1,2,3,4,5,6-hexachlorocyclohexane, $C_6H_6Cl_6$, by					
■ A free radical addition.					
\blacksquare B free radical substitution.					
\Box C electrophilic addition.					
\square D electrophilic substitution.					
	10 1 m a m (r)				
(Total for Question	18 = 1 mark)				
19 The skeletal formula of an organic compound is shown below.					
0 //					
This compound is					
A an amino acid.					
B an amide.					
C a primary amine.					
D a secondary amine.					
(Total for Question	19 = 1 mark)				
20					
$\begin{bmatrix} H_3 & H_3 \end{bmatrix}$ n					
Which is the IUPAC name for the monomer which reacts to make the polyme above?	r shown				
A 2-methylbut-1-ene					
B 2-methylbut-2-ene					
C 1,2-dimethylpropene					
D 1,1,2-trimethylethene					
(Total for Question 2	20 = 1 mark)				
TOTAL FOR SECTION A	- 20 MARKS				
	= 20 MARKS 7				

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

21 (a) The table below shows the first and second ionization energies of nickel, copper and zinc.

Element	1st ionization energy / kJ mol ⁻¹	2nd ionization energy / kJ mol ⁻¹
Ni	737	1753
Cu	746	1958
Zn	906	1733

(i) Complete the electronic configurations for an atom of nickel and an atom of copper. (2)

Ni: 1s² 2s² 2p⁶

- Cu: 1s² 2s² 2p⁶
 - *(ii) The values for the first ionization energies of copper and nickel are similar, but the values of the second ionization energies are significantly different.

Explain how these data give evidence for the electronic configuration of a copper atom.

(2)

(iii) Suggest why you might expect the third ionization energies of the three elements to increase from nickel to zinc.	(1)
(b) (i) Cu ⁺ (aq) ions are not stable in solution and undergo a disproportionation rea Suggest an equation for this reaction, including state symbols.	ction. (1)
(ii) Suggest in what way the appearance of Cul is similar to that of Znl ₂ . Give a reason for this similarity.	(2)
(c) Explain why zinc is not classified as a transition element.	(1)
(Total for Question 21 = 9 n	narks)

- **22** This question is about vanadium and its ions.
 - (a) Consider the data below.

Electrode system	Standard electrode potential E^{\ominus}/V
V ²⁺ (aq) V(s)	-1.18
V ³⁺ (aq), V ²⁺ (aq) Pt	-0.26

(i) Draw a labelled diagram showing how to set up a cell, using the two electrode systems in the table above, in order to measure E_{cell}^{\ominus} . Include standard conditions in your labelling.

(3)

(ii) Write an equation for the reaction in this cell. State symbols are not required.

(2)

(b) (i) Complete the table below with the missing standard electrode potentials. Use the table starting on page 14 of your Data Booklet.

(1)

Electrode system	Standard electrode potential E^{\ominus}/V
$[VO^{2+}(aq) + 2H^{+}(aq)], [V^{3+}(aq) + H_2O(I)] Pt$	
$[VO_2^+(aq) + 2H^+(aq)], [VO^{2+}(aq) + H_2O(I)] Pt$	
I₂(aq),2I⁻(aq) Pt	+0.54
$[2H^+(aq) + O_2(g)], [H_2O_2(aq)] Pt$	+0.68

(ii) Th	e colours o	of the different oxidation	states of vanadium are shown	below.
	[Oxidation state	Colour	
		+5	yellow	
		+4	blue	
		+3	green	
		+2	violet	
pro ea Giv	oposed rea ch case. ve the forr	action. Use your answers nula of the vanadium pro	s, A and B , calculate the E^{\ominus} values, to predict whether or not a readuct formed where a reaction make in each experiment.	action occurs in
Experiment <i>I</i>	4: Hydro	ogen peroxide is added to	o an aqueous solution containi	ng VO ₂ ions.
Experiment E		queous solution of potass ion containing VO ²⁺ ions.	ium iodide is added to an aqu	eous
·····				

(c) An experiment was carried out to determine the percentage purity of a sample of ammonium vanadate(V), NH₄VO₃.

An impure sample of ammonium vanadate(V) with mass 0.150 g was dissolved in dilute sulfuric acid. This produced a solution containing VO_2^+ ions. Excess zinc powder was added to the solution, and this reduced the VO_2^+ ions to V^{2+} ions.

The solution containing V²⁺ ions was titrated with potassium manganate(VII) of concentration 0.0200 mol dm⁻³. The manganate(VII) ions oxidized the V²⁺ back to VO₂⁺. The volume of potassium manganate(VII) required was 35.50 cm³.

(i) The manganate(VII) ions react as shown:

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Show, by writing the appropriate half equation or otherwise, that 5 mol V^{2^+} react with 3 mol MnO_4^- .

(1)

(ii) Calculate the number of moles of manganate(VII) ions used in the titration.

(1)

(iii) Calculate the number of moles of VO_2^+ in the original solution, and hence the percentage purity of the sample of NH_4VO_3 . Give your answer to **three** significant figures.

Molar mass of $NH_4VO_3 = 116.9 \text{ g mol}^{-1}$.

(3)

(Total for Question 22 = 17 marks)

	15
	(2)
and Structure X .	(2)
*(iii) Explain the difference in the arrangement of the electrons between benzene	
Enthalpy	
▲	
	(2)
value next to your arrow.	
benzene and calculate the value of this enthalpy change in kJ mol ⁻¹ . Write this	5
the relative enthalpies of the actual structure of benzene, Structure X and cyclohexane. Add an arrow to show the enthalpy change from Structure X to	
(ii) On the enthalpy level diagram below, draw labelled horizontal lines to show	

P 4 5 0 7 3 R A 0 1 5 2 8

(c) Benzene reacts with bromine in the presence of a catalyst of iron(III) bromide.

Write a mechanism for the reaction of benzene with bromine to form bromobenzene. Include an equation to show the involvement of the catalyst.

	bromine water.
	(2)
(ii)	Write the equation for this reaction showing the structure of the organic product. (2)
*/:::)	. The later of the second second second state state second second second state to second second state second s
^(III)	Explain why phenol can react with either bromine or with bromine water without a
	catalyst.
	catalyst. (2)
	(2)
	(2)
	(2)
	(2)
	(2)

P 4 5 0 7 3 R A 0 1 7 2 8

(i) Give the formula of Substance A .	(1)
(ii) Draw the displayed formula of the organic Substance C . You need not display the benzene ring.	(1)
(iii) Substances D and F are both brightly coloured but for different reasons. Classify Substances D and F .	(2)
Substance D	
Substance F	
(iv) Name Substance E .	(1)
(v) What two Substances, G and H , are required in the conversion of phenylamin	e
to Substance E ?	(1)
(vi) Suggest the structural formula of the substance which reacts with Substance to form Substance F .	E (1)
(Total for Question $24 = 10$ m	arks)
	ui N3 <i>j</i>
TOTAL FOR SECTION B = 52 MA	ARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

25 Read the passage below carefully and answer the questions which follow.

The general formula of most naturally occurring amino acids can be written RCH(NH₂)COOH, though in some amino acids, such as proline, the nitrogen atom is part of a five-membered ring. Amino acids are water soluble, though the extent of their solubility varies. All but one of the naturally occurring amino acids show optical activity.

The formula of the R group for some naturally occurring amino acids is shown below.

Amino acid	Formula of R group
serine	-CH ₂ OH
lysine	$-(CH_2)_4NH_2$
phenylalanine	$-CH_2C_6H_5$
leucine	$-CH_2CH(CH_3)_2$
iso-leucine	–CH(CH ₃)CH ₂ CH ₃
alanine	-CH ₃

Mixtures of amino acids can be separated by electrophoresis. This method depends on amino acids moving different distances through paper or gel when an electric field is applied. They can also be separated by chromatography. Ninhydrin, shown below, is the chemical which is used to locate the position of the amino acids on chromatograms.

Ninhydrin detects ammonia and primary and secondary amines. When it reacts with primary amines, a deep blue or purple colour is produced in a complex series of reactions. With proline, a yellow compound forms.

Ninhydrin is widely used to detect fingerprints. Sweat secretions from ridges on the finger contain dipeptides and proteins. These are left on porous surfaces such as paper, and react with ninhydrin.

When ninhydrin reacts with amino acids, carbon dioxide is released from the carboxylic acid group. Archaeologists have used this reaction to release the carbon from proteins in ancient bones, and, by comparing the proportions of carbon and nitrogen in the remains, they have obtained evidence for the diets of these animals.

(a) (i) At a pH of 5.68, serine exists as a zwitterion. Draw the formula of serine at this	s pH. (1)
*(ii) At pH 5.68, serine and lysine can be separated by electrophoresis. By considering the structures of the amino acids at this pH, suggest why this separation occurs.	(2)
*(b) Serine is very soluble in water, whilst phenylalanine is much less soluble. Explain the difference, disregarding any effect of zwitterion formation.	(2)
(c) The naturally occurring amino acid which does not show optical activity is not shown in the table. Give the formula of the R group for this acid.	(1)
	21 Turn over

- (d) The optical activity of equimolar solutions of naturally occurring samples of leucine and iso-leucine can be measured in an experiment using plane-polarized light.
 - (i) What measurement is made to show the optical activity of amino acids?

(1)

(1)

(ii) By considering the structures of iso-leucine and leucine, explain why iso-leucine has more stereoisomers than leucine.

Amino acid	Formula of R group
leucine	$-CH_2CH(CH_3)_2$
iso-leucine	-CH(CH ₃)CH ₂ CH ₃

(e) The amino acid proline, shown below, does not contain a primary amine group, but it can still form peptide bonds.

Draw the structure of the dipeptide formed when the carboxylic acid group of alanine reacts with proline. Circle the peptide group on your drawing.

(2)

(f) The first steps of the reaction of ninhydrin with alanine can be summarised in the equation shown below.

(i) By balancing the equation, suggest the structural formula of the product **Z**.

(1)

(ii) In the final stage, **Y** reacts with another molecule of ninhydrin to form a dye, **Q**, shown below.

What is the molecular formula of **Q**?

(1)

(iii) On com	bustion, 1.000 g of (Q produces 2	2.614 g carbon	dioxide, 0.2673 g w	vater
and 0.04	4620 g nitrogen.				

Use these data to calculate the percentage composition by mass of **Q**, and hence its empirical formula. Show whether your answer is consistent with the molecular formula of **Q**.

(4)

(iv) Evidence for the structure of **Q** is obtained from data in its mass spectrum, and the number of peaks in its low resolution nmr spectrum.

Suggest **one** piece of evidence from **each** type of spectroscopy which would support the structure shown in (f)(ii). Give data where appropriate.

(2)

(Total for Question 25 = 18 marks)

TOTAL FOR SECTION C = 18 MARKS

TOTAL FOR PAPER = 90 MARKS

BLANK PAGE

BLANK PAGE

									Т						c								1								
	0 (8)	(18)	4.0	He helium	2	20.2	Ne	neon	10	39.9	Ar	argon 18	83.8	Кr	krypton 36	131.3	Xe	xenon	54	[222]	Rn	radon 86		ted							
	7				(17)	19.0	Ŀ	fluorine	9	۲. ۲۵	บ	cniorine 17	79.9	Br	bromine 35	126.9	_	iodine	53	[210]	At	astatine 85		Elements with atomic numbers 112-116 have been reported but not fully authenticated		175	Lu	lutetium 71	[257]	Lr Iawrencium	103
	9				(16)	16.0	0	oxygen	8	32.1	S	sulfur 16	79.0	Se	selenium 34	127.6	Te	tellurium	52	[209]	Po	polonium 84		-116 have h nticated		173	Υb	ytterbium 70	[254]	No nobalium	102
	2				(15)	14.0	z	nitrogen		31.0	م -	pnospnorus 15	74.9	As	arsenic 33	121.8	Sb	antimony	51	209.0	Bi	bismuth 83		tomic numbers 112-116 hav but not fully authenticated		169	Tm	thulium 69	[256]	Md	101
	4				(14)	12.0	υ	carbon	9	28.1		silicon 14	72.6	e B	germanium 37	118.7	Sn	tin	50	207.2	Pb	lead 82		atomic nu but not i		167	E	erbium 68	[253]		100
	ε				(13)	10.8	8	boron	2 ²	27.0	A	aluminium 13	69.7	Ga	gallium 31	114.8	<u>_</u>	indium	49	204.4	F	thallium 81		nents with		165	Ю		[254]	Cf Es	66
SULLA												(12)	65.4	Zn	zinc	112.4	DQ	cadmium	48	200.6	Hg	mercury 80			_	163	D	dysprosium 66	[251]	Cf	98
Llell												(11)	63.5	Cu	copper	107.9		° v	47	197.0	Au	gold 79	[272]	Rg roentgenium	111	159		terbium 65	[245]	Bk herkalium	67
												(10)	58.7	Ż	nickel 28	106.4	Ρd	palladium	46	195.1	Ł	platinum 78	[271]	DS damstadtium	110	157		gadolinium 64	[247]		96
C lab		_										(6)	58.9	ပိ	cobalt 77	102.9	Rh	£	45	192.2	-	iridium 77	[268]	Mt meitnerium	109	152		europium 63	[243]	Am	95
		•		h ydrogen	-							(8)	55.8	Fe		101.1	Ru	rut	44	190.2	S	osmium 76	[277]	Hs hassium	108	150		samarium 62		Pu	94
lle re												(2)	54.9	Wn	ma	[98]	μ	molybdenum technetium	43	186.2	Re	rhenium 75	[264]	Bh bohrium	107	[147]	Pm	promethium 61	[237]	Np	93
_						mass	bol	rodani	Initiber			(9)	52.0	J	chr	95.9	Wo	molybdenum	42	183.8	3	tungsten 74	[266]	Sg seaborgium	106	144	PN	præcodymium neodymium promethium 59 60 61		U	92
					Key	relative atomic mass	atomic symbol	name	מנטווור (הנטרטוו) העוווטפו			(5)	50.9	>	vanadium	92.9	qN	Ē	41	180.9	Ta	tantalum 73	[262]	Db dubnium	105	141	Pr	praseodymium 59	[231]	Pa	91
						relat	atc	tomic	qroillic			(4)	47.9	ï	titanium 22	91.2	Zr	zirconium	40	178.5		hafnium 72	[261]	Rf rutherfordium	104	140	Ce	cerium 58	232	therium	60
						_						(3)	45.0	Sc	scandium 21	88.9	7	yttrium	39	138.9	La*	lanthanum 57	[227]	Ac* actinium	89		es				
	2				(2)	0.6	Be	beryllium	4	24.3	Mg	magnesium 12	40.1	Ca	calcium	87.6		str	38	137.3	Ba	barium 56	[226]	Ra radium	88		* Lanthanide series	* Actinide series			
	-				(1)	6.9	:-	lithium		23.0	Na	sodium 11	39.1	¥	potassium 10	85.5	ßb	rubidium	37	132.9	ک	caesium 55	[223]	Fr francium	87		* Lanth	* Actin			

The Periodic Table of Elements

P 4 5 0 7 3 R A 0 2 8 2 8