

Level 2 Certificate FURTHER MATHEMATICS 8365/2

Paper 2 Calculator

Mark scheme

June 2022

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright information

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2022 AQA and its licensors. All rights reserved.

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

Μ	Method marks are awarded for a correct method which could lead to a correct answer.
М дер	A method mark dependent on a previous method mark being awarded.
Α	Accuracy marks are awarded when following on from a correct method. It is not necessary to always see the method. This can be implied.
В	Marks awarded independent of method.
B dep	A mark that can only be awarded if a previous independent mark has been awarded.
ft	Follow through marks. Marks awarded following a mistake in an earlier step.
SC	Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.
oe	Or equivalent. Accept answers that are equivalent.
	eg, accept 0.5 as well as $\frac{1}{2}$
[a, b]	Accept values between a and b inclusive.
[a, b)	Accept values between a and b including a but excluding b.
(a, b]	Accept values between a and b excluding a but including b.
(a, b)	Accept values between a and b excluding both a and b.
3.14	Accept answers which begin 3.14 eg 3.14, 3.142, 3.1416

Examiners should consistently apply the following principles.

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

Continental notation

Accept a comma used instead of a decimal point (for example, in measurements or currency), provided that it is clear to the examiner that the candidate intended it to be a decimal point.

Q	Answer	Mark	Comments	
	6w(2 + 3w)		B1 partial factorisation	
		B2	eg $3w(4 + 6w)$ or $2w(6 + 9w)$	')
		DZ	or $w(12 + 18w)$ or $6(2w + 3w)$	v ²)
			or $3(4w + 6w^2)$ or $2(6w + 9w^2)$	v ²)
	Ad	ditional	Guidance	
	B1 may be awarded for correct work with a seen amongst multiple attempts	with no, oi	r incorrect answer, even if this	
	6w(2 + 3w) seen with further simplification	ation		B1
	$1(12w + 18w^2)$			B0
1	(2 + 3w) is equivalent to $(3w + 2)$ etc			
	Condone $(6w + 0)$ for $6w$ etc			
	Condone use of multiplication signs in	B2 or B1	responses	
	eg 6w × (2 + 3w) or w × 6 × (2 + 3w))		B2
	Condone missing closing bracket in B	2 or B1 re	esponses	
	eg 3w(4 + 6w			B1
	Condone w3 for 3w etc for B1 eg w3	3(4 + 6w)		B1
	w6(2 + 3w)			B1
	Ignore any attempt to 'solve' after B2	or B1 see	n	
	Responses involving fractions or surd	s are not	acceptable	

Q	Answer	Mark	Comments	
	-8	B2	B1 correct equation or calcul eg $\frac{a+6}{2} = -1$ or $a + \frac{6-a}{2}$ or $-1-7$ or $6-7 \times 2$ allow a to be any letter	
	Ad	ditional	Guidance	
	Answer –8 (no need to check workir	ng)		B2
	Accept (, -8) or, -8 (no need to check working)			
2	Allow working in vectors $eg\begin{pmatrix} 2\\ -1 \end{pmatrix} - \begin{pmatrix} 1\\ -1 \end{pmatrix}$	(6) (7)		B1
	oe equations may involve equation of	the line		
	eg1 grad = $\frac{61}{8-2}$ $y = \frac{7}{6}x - \frac{1}{6}x - $	$\frac{10}{3}$		
	$y = \frac{7}{6} \times -4 - \frac{10}{3}$			B1
	eg2 $-1 - a = \frac{7}{6}(24)$			B1

Q	Answer	Mark	Comments
	Alternative method 1 Starts by mu	ultiplying 1	Ist matrix by 3
	$\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix}$	B1	brackets may be missing but values must be in correct position in a 2 by 2 array
	At least two values correct from evaluation of their $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix}$	M1	brackets may be missing but values must be in correct position in a 2 by 2 array multiplication of matrices must be in the
	$ \begin{array}{c} \text{(101)} (3 \ 0)^{(-1)} (-1 \ 5) \\ \text{(18)} 30 \\ \text{(6)} 0 \end{array} $	A1ft	order shown must have brackets ft B0M1
3(a)	Alternative method 2 Starts by mu	ultiplying t	he matrices
5(a)	At least two values correct in $ \begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix} $	M1	brackets may be missing but values must be in correct position in a 2 by 2 array
	$\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$	A1	brackets may be missing but values must be in correct position in a 2 by 2 array
	$\begin{pmatrix} 18 & 30 \\ 6 & 0 \end{pmatrix}$	B1ft	must have brackets ft 3 × their $\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$
			their $\begin{pmatrix} 6 & 10 \\ 2 & 0 \end{pmatrix}$ must be a 2 by 2 array

	Additional Guidance	
	Alt 1 $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 18 & 42 \\ 6 & 8 \end{pmatrix}$	B1M1A0ft
	Alt 1 $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 24 & 35 \\ 4 & 0 \end{pmatrix}$	B1M0A0ft
	Alt 1 $\begin{pmatrix} 12 & 6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 18 & 30 \\ 2 & 0 \end{pmatrix}$	B0M1A1ft
	Alt 1 $\begin{pmatrix} 7 & 5 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 14 & 25 \\ 5 & 20 \end{pmatrix}$	B0M1A0ft
3(a) cont	Alt 2 $\begin{pmatrix} 6 & 10 \\ 1 & 5 \end{pmatrix}$ with answer $\begin{pmatrix} 18 & 30 \\ 3 & 15 \end{pmatrix}$	M1A0B1ft
	Alt 2 $\begin{pmatrix} 8 & 0 \\ -1 & 0 \end{pmatrix}$ with answer $\begin{pmatrix} 24 & 0 \\ -3 & 0 \end{pmatrix}$	M0A0B1ft
	Alt 2 $\begin{pmatrix} 8 & 0 \\ -1 & 0 \end{pmatrix}$ with answer $\begin{pmatrix} 24 & 0 \\ -1 & 0 \end{pmatrix}$	M0A0B0ft
	For the final mark allow if there is intention to enclose the correct elements in brackets	
	Responses that start by multiplying 2nd matrix by 3 should be marked using the principles of Alt 1	
	Multiplying both matrices by 3 can score a maximum of B1 $\begin{pmatrix} 12 & 6 \\ 3 & 0 \end{pmatrix}$ or $\begin{pmatrix} 6 & 0 \\ -3 & 15 \end{pmatrix}$	B1M0A0ft

Q	Answer	Mark	Comments	
	$14 + a^3 = 78$ or $2b - 5a = 12$ or $14 + a^3$ and $2b - 5a$ M1oe eg $a^3 = 64$ or $2b + -5a = 12$ allow eg $7 \times 2 + a^2 \times a$ for $14 + a^3$ allow eg $2 \times b - 5 \times a$ for $2b - 5a$ $a = 4$ A1 $\frac{12 + 5 \times theira}{2}$ correctly evaluatedA1ftaccept an exact value or a value row to 1 dp or better Additional GuidanceAdditional Guidance $(14 + a^3)$ $2b - 5a$ or $(14 + a^3, 2b - 5a)$ with or without brackets		– 5a	
3(b)			M1	
	a = 4 (M1 is implied)			M1A1
	M1 for $2b - 5a = 12$ is implied by ar answer for b	incorrect	value for a with a correct ft	
	eg a = 8 b = 26			M1A0A1ft
	An incorrect but exact value for a see	n in worki	ng (eg $\frac{8}{3}$) with a rounded	
	value for a on answer line (eg 2.6)			
	Allow ft for b from the exact or the rou	Inded valu	Je	
	a = 4 and -4 with one or both of $b = 1$	6 and –4		M1A0A1ft
	a = 4 and -4 (no values for b or income	orrect valu	ues for b)	M1A0A0ft

Q	Answer	Mark	Comments
	Alternative method 1	I	
	y + 4x = c or $y = -4x + cor gradient = -4$	M1	oe c can be any value other than 6 may be implied
	$1 + 4 \times 2 = c$ or $1 = (\text{their} - 4) \times 2 + c$ or $c = 9$	M1	oe their -4 can only be 4 or $\frac{1}{4}$ implied by a correct equation of B eg y - 1 = -4(x - 2) or y + 4x = 9 or y = -4x + 9
	2d + 4d = their 9 or $2d = ($ their $-4)d + $ their 9 or $6d = 9$ or $9 \div 6$	M1dep	oe substitution of (d, 2d) into their equation of B equation with no algebraic denominator dep on 2nd M1
4	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	oe eg $\frac{9}{6}$
	Alternative method 2	I	
	y + 4x = c or $y = -4x + cor gradient = -4$	M1	oe c can be any value other than 6 may be implied
	$\frac{2d-1}{d-2} = \text{their} -4$	M1	oe their –4 can only be 4 or $\frac{1}{4}$ may be implied
	2d - 1 = their -4(d - 2) or $6d = 9$ or $9 \div 6$	M1dep	oe equation with no algebraic denominator dep on 2nd M1
	$\frac{3}{2}$ or $1\frac{1}{2}$ or 1.5	A1	oe eg $\frac{9}{6}$

	Additional Guidance	
	Ignore simplification or conversion if correct answer seen	
	Condone answer (1.5, 3) oe	
	gradient = $-4x$ must be recovered	
	3rd M1 Allow (d, 2d) to be (x, 2x) etc	
	3rd M1 Do not allow use of (2d, d) to be a misread	
	A correct equation in d with no algebraic denominator implies M1M1M1 eg $2d - 1 = -4(d - 2)$ or $2d = -4d + 9$ or $6d = 9$	M1M1M1
	Alt 1 gradient = 4	MO
	y = 4x - 7	M1
4	2d = 4d - 7 $d = 3.5$	
cont	Alt 1 gradient = $\frac{1}{4}$	MO
	$y = \frac{1}{4}x + \frac{1}{2}$	M1
	$2d = \frac{1}{4}d + \frac{1}{2}$ $d = \frac{2}{7}$	M1A0
	gradient –4 followed by correct method using gradient 4 or $\frac{1}{4}$ for 2nd and 3rd marks can score a maximum of M2	
	eg Alt 1 gradient -4 $1 = 4 \times 2 + c$ $2d = 4d - 7$	M0M1M1
	gradient –4 followed by correct method using gradient 4 or $\frac{1}{4}$ for 2nd mark (but not the 3rd mark) can score a maximum of M1	
	eg Alt 1 gradient –4 $y = \frac{1}{4}x + \frac{1}{2}$ (no further valid work)	MOM1M0

Q	Answer	Mark	Comments
Q 5	Answer -3 -2 -1 with no other values	Mark B3	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
			or $3(x + 4)(x - 4) < 0$ or $(x + 4)(x - 4) < 0$

	1	
	Additional Guidance	
	B1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts	
	Answer -3 -2 -1 with no other values (no need to check working)	B3
	-4 < x < 0 is equivalent to the two inequalities $x > -4$ $x < 0$ etc	B2
	For B1 allow equivalent factorised inequalities or equivalent inequalities with coefficient 1 for x^2	
	eg1 $(3x + 12)(x - 4) < 0$	B1
	eg2 $3(4 + x)(4 - x) > 0$	B1
5 cont	eg3 $x^2 - \frac{48}{3} < 0$	B1
	(-4, 0) or [-3, -1] etc	B2
	(-4, 4)	B1
	Only $x > -4$ or only $x < \pm 4$ or only $x < 4$	B0
	Condone B3 response in working with any inequality on answer line	B3
	Condone B3 response in working with 3 on answer line	Do
	(3 is likely to be the number of integers)	B3
	Only invalid inequalities with no or incorrect answer	B0
	Only equations with no or incorrect answer	B0

Q	Answer	Mark	Comments
	Alternative method 1 Expands the	e given bra	ackets
	$((2n + 1)^2 =) 4n^2 + 2n + 2n + 1$ or $((2n - 1)^2 =) 4n^2 - 2n - 2n + 1$	M1	oe expansion eg $((2n + 1)^2 =) 4n^2 + 4n + 1$ may be seen in a grid may be seen embedded in second mark ignore any denominator
6	$\begin{array}{c} 4n^2+2n+2n+1-4n^2+2n\\ +2n-1\\ or\\ 4n^2+4n+1-4n^2+4n-1\\ or\\ 4n^2+2n+2n+1\\ -\left(4n^2-2n-2n+1\right) \text{ and }8n\\ \text{with no errors seen}\\ or\\ 4n^2+4n+1-\left(4n^2-4n+1\right)\\ \text{ and }8n \text{ with no errors seen} \end{array}$	M1dep	terms in any order ignore any denominator
	M2 seen and valid explanation	A1	eg1 M2 seen and $\frac{8n}{4} = 2n$ eg2 M2 seen and 8n is even and when divided by 4 it is even
	Alternative method 2 Difference of	f two squa	ares
	(2n + 1 + 2n - 1)(2n + 1 - (2n - 1)) or (2n + 1 + 2n - 1)(2n + 1 - 2n + 1)	M1	ignore any denominator
	M1 seen and $4n \times 2$ with no errors seen	M1dep	ignore any denominator
	M2 seen and valid explanation	A1	eg1 M2 seen and $\frac{4n \times 2}{4} = 2n$ eg2 M2 seen and $\frac{8n}{4} = 2n$
			eg2 M2 seen and $\frac{1}{4} = 2n$ eg3 M2 seen and 8n is even and when divided by 4 it is even

	Additional Guidance	
	Do not allow missing brackets even if recovered	
	Alt 1 $4n^2 + 4n + 1 - 4n^2 - 4n + 1$	M1M0
	Alt 1 $4n^2 + 2n + 2n + 1 - (4n^2 - 2n - 2n + 1)$	M1
	$=4n^2 + 4n + 1 - 4n^2 - 4n - 1 = 8n$ (8n but error seen)	MO
	Alt 1 Only 8n	MOMO
	Alt 1 2nd M1 Allow unnecessary brackets	
	eg $4n^2 + 4n + 1 - (4n^2 - 4n + 1) = (4n^2 - 4n^2) + (4n + 4n) + (1 - 1)$	M1M1
	Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - 2n - 1)$	MOMO
6	Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - (2n - 1))$	M1
cont	$= (2n + 1 + 2n - 1)(2n + 1 - 2n - 1) = 4n \times 2$ (4n × 2 but error seen)	MO
	Alt 2 $(2n + 1 + 2n - 1)(2n + 1 - (2n - 1)) = 8n$	M1M0
	Alt 2 Only $4n \times 2$	MOMO
	Response only referring to odds and evens or only involving substitution	M0M0A0
	Assuming the expression simplifies to $2k$ and working back could score up to M1M1	
	Setting up an equation eg $(2n + 1)^2 - (2n - 1)^2 = 4$ could score up to M1M1	
	For A1 do not allow incorrect use of =	
	eg $4n^2 + 2n + 2n + 1 - 4n^2 + 2n + 2n - 1$	M1M1
	$=\frac{8n}{4}=2n$	A0

Q	Answer	Mark	Comments	
	240	B2	B1 2 × 5 × 4 × 3 × 2 or 2 × or 2 × 5! or 240 seen SC1 answer 120 or 360 or or 600 or 720	
7	Additional Guidance			
	Ignore × 1 for B1			
	240 in working lines with 60 on answer line			B1
	720 in working lines with 1440 on answer line			Zero
	Allow dots for multiplication but do not allow addition			

Q	Answer	Mark	Comments	
	$3x^2$ or $-10x$	M1	oe eg $3 \times x^{3-1}$ or $-2 \times 5x^1$	
	$3x^2 - 10x - 4 = 0$ or $-3x^2 + 10x + 4 = 0$	A1	must show = 0	
	Ad	ditional (Guidance	
	M1 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
8(a)	Ignore extra terms eg $3x^2 - 10x + c$			M1
	$3x^2 - 10x = 4$ (even if $3x^2 - 10x - 4 = 0$ in (b))			M1A0
	$3x^2 - 10x - 4$ (even if $3x^2 - 10x - 4$	= 0 in (b))		M1A0
	$3x^2 - 10x - 4 = 0$ seen in working with $3x^2 - 10x - 4$ on answer line			M1A1
	Condone for M1 $y = 3x^2 \dots$ etc (may still score A1 if recovered)			
	Answer $y = 3x^2 - 10x - 4 = 0$			M1A0

Q	Answer	Mark	Comments	
	$\frac{10\pm\sqrt{(-10)^2-4\times3\times-4}}{2\times3}$ or $\frac{10\pm\sqrt{148}}{6}$ or $\frac{5}{3}\pm\sqrt{\frac{37}{9}}$ or two correct solutions with at least one not to 3 sf	M1	oe eg $\frac{5\pm\sqrt{37}}{3}$ correct attempt to solve their $ax^2 + bx + c$ (= 0) from (a, b and c all non-zero eg 3.69(4) and -0.36(09 or 3.7 and -0.36(09)	
	correct or ft any answers that have at lea be rounded to 3 sf at least one answer must hav 4 sf			
	Additional Guidance			
	-10^2 used for $(-10)^2$ is M0 unless reco	overed		
8(b)	10^2 is equivalent to $(-10)^2$			
	Not using \pm is M0 unless recovered			
	A short dividing line or a short square root symbol is M0 unless recovered			
	$\sqrt{((-10)^2 - 4 \times 3 \times -4)}$ is correct for $$	(-10) ² - 4	4×3×−4	
	Correct factorisation of their $ax^2 + bx$	+ c (= 0) f	rom (a) scores at least M1	
	(a) $3x^2 - 10x + 4 = 0$ (b) $\frac{10 \pm \sqrt{(-10)^2 - 4 \times 3 \times 4}}{2 \times 3}$ 2.87 and 0.46			
	(a) $3x^2 - 10x = 4$ (b) up to 2 marks can be scored if using $3x^2 - 10x - 4 = 0$			
	(a) $3x^2 - 10x - 8$ (b) up to 2 marks can be scored if using $3x^2 - 10x - 8 = 0$			
	One solution correct does not imply M1			
	Both solutions seen in working but only one on answer line			M1A0
	3.69 and -0.361 in working with -3.6	9 and 0.3	361 on answer line	M1A0

Q	Answer	Mark	Comments		
	30 + 12k or $12k + 30$	B1	allow factorised eg $6(5 + 2k)$		
	Additional Guidance				
	30 + 12k seen in working but incorrect answer eg 5 + 2k or -2.5			B0	
9(a)	Answer line $30 + 12k$ and expression for the nth term eg $30 + 4nk - 4k$			B0	
	30 + 8k + 4k			B0	
	$30 \pm 12k$ unambiguously indicated as 4th term (eg in given sequence) with answer line blank			B1	

Q	Answer	Mark	Comments	
	Alternative method 1 Works out a	a correct e	xpression for the 100th term	
	$30 + 99 \times 4k$ or $30 + 396k$ or $100 \times 4k + 30 - 4k$	M1	oe eg $30 + (100 - 1) \times 4k$ or $30 + 4k + 98 \times 4k$ or $30 + 8k + 97 \times 4k$ or $30 + 12k + 96 \times 4k$	
	$99 \times 4k = 525 - 30$ or $396k = 495$ or $495 \div 396$	M1dep	oe terms must be collected in an equation eg $396k - 495 = 0$	
	1.25 or $\frac{5}{4}$ or $1\frac{1}{4}$	A1	oe eg <u>495</u> <u>396</u>	
	Alternative method 2 Uses a common difference (eg d)			
- 4 - 5	$30 + 99 \times d$ or $30 + 99d$	M1	oe eg 30 + (100 - 1) × d	
9(b)	$4k = \frac{525 - 30}{99} \text{ or } 4k = \frac{495}{99}$ or $4k = 5$ or $5 \div 4$	M1dep	oe terms must be collected in an equation eg $4k - 5 = 0$	
	1.25 or $\frac{5}{4}$ or $1\frac{1}{4}$	A1	oe eg <u>495</u> <u>396</u>	
	Alternative method 3 Uses their (a) to work	out an expression for the 100th term	
	their (a) $+$ 96 \times 4k or their (a) $+$ 384k	M1	their (a) must be in terms of k their (a) cannot be $30 + 4k \mbox{ or } 30 + 8k$	
	Collection of terms for their (a) $+ 384k = 525$	M1dep	their (a) must be of the form $c + dk$ $c \neq 0$ $d \neq 0$	
	Solution to their equation rounded to 1 dp or better	A1ft	ft their (a) and M2	

	Additional Guidance					
	Ignore simplification or conversion if correct answer seen					
9(b)	Alt 1 Do not allow M1 if seen embedded eg in formula for S_n					
cont	Alt 3 (a) 12k (b) 12k + 384k 396k = 525 1.326	M1M0A0ft				
	Alt 3 (a) $30 + 16k$ (b) $30 + 16k + 384k$ $400k = 525 - 30$ 1.238	M1M1A1ft				
	Alt 3 (a) $12k + 60$ (b) $12k + 60 + 96 \times 4k$ $396k = 525 - 60$ 1.2	M1M1A1ft				

Q	Answer	Mark	Comments
10	D	B1	

Q	Answer	Mark	Comments	
	(0 <) x < 60 or $(0 \leq) x < 60$	B2	B1 cos x > $\frac{5-3}{4}$ or cos x > or cos x > $\frac{1}{2}$ or x < cos ⁻¹ or a < x < 60 where a is a value less than 60 or b \leq x < 60 where b is a v than 60 SC1 (0 <) x \leq 60 or (0 \leq) x	1 2 non-zero /alue less
	Ad	ditional (Guidance	
	Answer $(0 <) x < 60$ (can ignore working lines)			B2
	60 > x > 0 is equivalent to $0 < x < 60$ etc			
11	0 < x < 60 is equivalent to the two inequalities $x > 0$ $x < 60$ etc			B2
	Allow decimals for B1 responses eg $\cos x > 0.5$			B1
	For B1 condone $\cos x = > \frac{1}{2}$ for $\cos x > \frac{1}{2}$			
	$\cos x > \frac{1}{2}$ followed by $x > \cos^{-1} \frac{1}{2}$			B1
	Only $x > \cos^{-1} \frac{1}{2}$			B0
	(0, 60)			B2
	[0, 60)			B2
	(0, 60]			SC1
	[0, 60]			SC1

Q	Answer	Mark	Comments
	$3x \text{ or } -2x^{-1} \text{ or } 0.75 x^{-2}$	M1	oe must have powers of x simplified eg $\frac{12x}{4}$ or $-\frac{2}{x}$ or $\frac{3}{4x^2}$
	$3x$ and $-2x^{-1}$ and $0.75 x^{-2}$	M1dep	oe must have powers of x simplified eg $\frac{12x}{4}$ and $-\frac{2}{x}$ and $\frac{3}{4x^2}$
12	Any one of $3x$ and $3(x^0)$ or $-2x^{-1}$ and $2x^{-2}$ or $0.75x^{-2}$ and $-1.5x^{-3}$	M1	oe eg $\frac{12x}{4}$ and $\frac{12}{4} x^{1-1}$ or $-\frac{2}{x}$ and $\frac{2}{x^2}$ or $-\frac{2}{x}$ and $-2x^{-2}$ or $\frac{3}{4x^2}$ and $-\frac{3}{2x^3}$ implies 1st M1 for the derivatives x may be (-1)
	At least two of $3x$ and $3(x^0)$ or $-2x^{-1}$ and $2x^{-2}$ or $0.75x^{-2}$ and $-1.5x^{-3}$	M1dep	oe dep on 3rd M1 for the derivatives x may be (-1)
	All three terms and their derivatives correct and 6.5	A1 oe eg all three terms and their derives correct and $\frac{13}{2}$ for the derivatives x may be (-1) SC3 104	

	Additional Guidance				
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	$\frac{3}{4x^2}$ seen but subsequently incorrectly simplified eg $12x^{-2}$				
	(subsequent marks may be scored)				
12 cont	Correct answer after correct use of quotient rule or product rule				
	Incorrect answer after use of quotient rule or product rule	Zero			
	Condone $y = 3 + 2x^{-2}$ etc				
	All three terms and their derivatives correct and 6.5 in working but different answer eg $y = 6.5x \dots$	M4A0			
	SC3 is for multiplying the numerator by $4x^{-2}$ with no subsequent errors				

Q	Answer	Mark	Comments		
	Alternative method 1				
	$(x-1)^2 + (y-9)^2 = 25$		B2 $(x-1)^2 + (y-9)^2 = 5^2$		
			or (1, 9) and radius = 5		
			or (1, 9) and radius ² = 5^2		
			or (1, 9) and radius ² = 25		
			B1 $(x-1)^2 + (y-9)^2 = k$		
		B3	or $(x)^2 + (y)^2 = 25$		
			or $(x)^2 + (y)^2 = 5^2$ or (1, 9)		
			or $\frac{-2+4}{2}$ oe and $\frac{5+13}{2}$ or		
			or -2 oe and -2 of	be	
			or radius = 5 or radius ² = 5^2		
			or radius ² = 25		
	Alternative method 2 Uses perpendicular lines where (x, y) is a point on the circle				
13	$\frac{y-5}{y-2} \times \frac{y-13}{y-4} = -1$	M1	oe		
	x2 x-4		eg $(y-5)(y-13) = -1(x+2)(x-4)$		
	$y^2 - 18y + 65 + x^2 - 2x - 8 = 0$	M1dep	oe equation of circle with bra expanded and fractions elimi		
			eg $y^2 - 18y + 65 = -x^2 + 2x + 75 = -x^2 + 2x + 75 = -x^2 + 2x + 2x + 75 = -x^2 + 2x^2 + -x^2 + -x^2 + -x^2 = -x^2 + -x^2 + -x^2 + -x^2 + -x^2 = -x^2 + -x^2$	- 8	
	$(x-1)^2 + (y-9)^2 = 25$	A1			
	Ad	ditional (Guidance		
	$a = 1$ $b = 9$ $c = 25$ implies $(x - 1)^2 + (y - 9)^2 = 25$				
	Alt 1 (1, 9) may be implied eg $x = 1$	Alt 1 (1, 9) may be implied eg $x = 1$ $y = 9$ or 1, 9			
	Alt 1 $(x + 3)^2 + (y + 4)^2 = 5^2$			B1	
	Alt 1 $(x - 1)^2 + (y - 9)^2 = 5$ (with no indication that radius = 5)			B1	
	Alt 1 r = 5			B1	
	Alt 1 diameter = 10			B0	

 $(x - 1)^2 + (y - 9)^2 = 25$ in working lines with brackets expanded on answer line

Q	Answer	Mark	Comments	
	4(x + 15) + 4(x + 15) - 40 = 180 or $8(x + 15) - 40 = 180$ or $4(x + 15) = \frac{180 + 40}{2}$ or $4(x + 15) - 40 = \frac{180 - 40}{2}$ or y + 4(x + 15) = 180 and $y = 4(x + 15) - 40$	M1	oe equation in x or pair of equations in x and y y may be any letter other than eg $180 - (4x + 60) + 40 = 4x$ or $4(x + 15) = 110$ or $4(x + 15) - 40 = 70$ or $y + 4x = 120$ and $y = 4x + 100$ implied by $y = 70$	x + 60
14	4x + 60 + 4x + 60 - 40 = 180 or $8x + 120 - 40 = 180$ or $8x = 100$ or $100 \div 8$ or $4x = 50$ or $50 \div 4$ 12.5 or $\frac{25}{2}$ or $12\frac{1}{2}$	M1dep A1	oe equation or calculation equation with brackets expanded and fractions eliminated eg $120 - 4x + 40 = 4x + 60$ or $8x + 80 = 180$ or $4x + 60 = 110$ or $4x + 20 = 70$ oe eg $\frac{100}{8}$ or $\frac{50}{4}$ SC2 2.5 oe	
	Additional Guidance			
	Ignore simplification or conversion if c	orrect and	swer seen	
	2nd M1 Allow unnecessary brackets eg $(4x + 60) + (4x + 60) - 40 = 180$			M1M1
	1st M1 may be implied if expansion error seen eg $4(x + 15) = 4x + 15$ (may be seen on diagram) 4x + 15 + 4x + 15 - 40 = 180			M1M0
	Only $4x + 15 + 4x + 15 - 40 = 180$			MO
	SC2 is when they have angle PQR 40)° larger th	nan angle PSR	

Q	Answer	Mark	Comments	
	Alternative method 1 Processes the brackets then divides			
	$\frac{5x}{10} + \frac{6x}{10}$	M1	oe valid common denominator with both numerators correct eg $\frac{10x}{20} + \frac{12x}{20}$	
15	1 <u>1x</u> 10	A1	oe single term eg $\frac{22x}{20}$ or 1.1x may be implied eg by single term with roots evaluated that is equivalent to $\frac{11}{5x^2}$	
	$\frac{x^{6\div 2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied eg by multiplication by $\frac{2}{x^3}$	
	their $\frac{11x}{10} \times \frac{2}{x^3}$ or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$ or $\frac{22}{10}x^{-2}$	M1dep	oe multiplication eg $\frac{11x}{10} \times 2x^{-3}$ their $\frac{11x}{10}$ can be unprocessed dep on 2nd M1	
	$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$	

Mark scheme and Additional Guidance continues on the next page

	Alternative method 2 Divides ther	n expands	the brackets	
	$\frac{x^{6\div 2}}{2}$ or $\frac{x^3}{2}$	M1	may be implied eg by multiplication by $\frac{2}{x^3}$	
	$\left(\frac{x}{2} + \frac{3x}{5}\right) \times \frac{2}{x^3}$	M1dep	oe multiplication eg $\left(\frac{x}{2} + \frac{3x}{5}\right) \times 2x^{-3}$	
	$\frac{2x}{2x^3} + \frac{6x}{5x^3}$ or $\frac{1}{x^2} + \frac{6}{5x^2}$	M1dep	oe expansion of brackets	
15 cont	$\frac{10x}{10x^3} + \frac{12x}{10x^3} \text{ or } \frac{5}{5x^2} + \frac{6}{5x^2}$ or $\frac{22x}{10x^3}$ or $\frac{22}{10x^2}$ or $\frac{11x}{5x^3}$ or $\frac{22}{10}x^{-2}$	M1dep	oe valid common denominator numerators correct eg $\frac{10x^4}{10x^6} + \frac{12x^4}{10x^6}$ or $\frac{22x^4}{10x^6}$ roots must be processed	
	$\frac{11}{5x^2}$ or $\frac{11}{5}x^{-2}$ or $2.2x^{-2}$	A1	allow $2\frac{1}{5}x^{-2}$ or $\frac{2.2}{x^2}$	
	Additional Guidance			
	Any single fraction with roots evaluated that is equivalent to $\frac{11}{5x^2}$			4 marks
	Allow inclusion of \pm from the square root for up to 4 marks			
	$\frac{11}{5x^2}$ in working with answer $\frac{11}{5}x^2$	$\frac{11}{5x^2}$ in working with answer $\frac{11}{5}x^2$		
	Alt 1 $\frac{11x}{10}$ subsequently squared and not recovered			M1A1 M0M0A0

Q	Answer	Mark	Comments		
	Alternative method 1 Uses $\frac{1}{2}$ absin C				
	$\frac{1}{2} \times 16 \times 16 \times \sin x$ or 128 sin x	M1	oe eg $\frac{1}{2} \times 16 \times 16 \times sin (180 - 2y)$ x can be any letter or expression may be implied		
	sin x = 120 ÷ $\left(\frac{1}{2} \times 16 \times 16\right)$ or sin x = $\frac{15}{16}$ or sin ⁻¹ $\frac{15}{16}$ or sin ⁻¹ [0.93, 0.94]	M1dep	oe eg sin x = $\frac{240}{256}$ or sin x = [0.93, 0.94] equation must have sin x = x can be any letter or expression		
	or [68.4, 70.12313] <u>180-their[68.4,70.12313]</u> <u>2</u>	M1dep	oe		
16	[54.93, 55.8]	A1	SC2 [75.82, 76.4]		
10	Alternative method 2 Works out perpendicular height				
	$120 \div \left(\frac{1}{2} \times 16\right)$ or $120 \div 8$ or 15	M1			
	$\cos x = \frac{\sqrt{16^2 - (\text{their15})^2}}{16}$		oe eg sin x = $\frac{15}{16}$ or sin x = [0.93, 0.94]		
	or $\cos^{-1} \frac{\sqrt{31}}{16}$		or $\cos x = [0.34, 0.35]$		
	or $\tan x = \frac{15}{\sqrt{16^2 - (\text{their15})^2}}$	M1dep	or tan x = [2.69, 2.7] x can be any letter or expression		
	or $\tan^{-1} \frac{15}{\sqrt{31}}$				
	or [68.4, 70.12313]				
	<u>180-their[68.4,70.12313</u> 2	M1dep	oe		
	[54.93, 55.8]	A1	SC2 [75.82, 76.4]		

	Alternative method 3 Works out perpendicular height				
	120 ÷ $\left(\frac{1}{2} \times 16\right)$ or 120 ÷ 8 or 15	M1	oe		
	$16 - \sqrt{16^2 - (\text{their15})^2}$ or $16 - \sqrt{31}$ or [10.4, 10.44]	M1dep	oe eg tan y = $\frac{15}{16 - \sqrt{16^2 - (th)^2}}$ y can be any letter or express	,	
	tan ⁻¹ 15 their[10.4,10.44]	M1dep	oe eg tan ⁻¹ [1.43, 1.44231]		
	[54.93, 55.8]	A1	SC2 [75.82, 76.4]		
16 cont	Additional Guidance				
	Alt 1 y = [68.4, 70.12313]				
	Condone $sin = for sin x = etc$				
	Condone $\sin^{-1} = 0.9375$ for $\sin^{-1} 0.9375$ etc				
	SC2 is for omitting the 0.5 from the area of triangle formula				
	After scoring M1M1, the 3rd M1 is for				
	eg Alt 1 68.6	M1M1			
	Cosine rule used to work out the third side of the triangle followed by sine rule to work out y (up to \sin^{-1})				
	If there are no errors seen in the method the 3rd M1 is awarded and possibly the A1 as well				

Mark scheme and Additional Guidance continue on the next page

Q	Answer	Mark	Comments
	Elimination of one variable making an equation with at least two terms	two terms	eg1 (elimination of b by adding 1st and 2nd equations)
17	17 M1		5a + 3c = -1 with at least two terms correct
			eg2 (elimination of a by doubling 1st equation and subtracting 3rd equation)
			5b - 7c = -1 with at least two terms correct

	1	
Elimination of one variable making an equation with at least two terms correct and		eg1 (elimination of b by adding 1st and 2nd equations and elimination of b by trebling 3rd equation and subtracting 1st equation)
elimination of the same variable making a different equation with at		5a + 3c = -1 with at least two terms correct
least two terms correct		and
	M1dep	5a + 11c = 23 with at least two terms correct
		eg2 (elimination of a by doubling 1st equation and subtracting 3rd equation and elimination of a by doubling 3rd equation and subtracting 2nd equation)
		5b - 7c = -1 with at least two terms correct
		and
		5b + c = 23 with at least two terms correct
Correct equation in one variable with two correct equations in the same two variables	M1dep	eg $3c - 11c = -1 - 23$ or $-8c = -24$ or $c = 3$ with $5a + 3c = -1$ and $5a + 11c = 23$
equations in the same two variables	A1	eg c = 3 and a = -2 with 5a + 3c = -1 and 5a + $11c = 23$
a = -2 $b = 4$ $c = 3with two correct equations in thesame two variables$	A1	eg $a = -2$ $b = 4$ $c = 3$ with $5a + 3c = -1$ and $5a + 11c = 23$
	an equation with at least two terms correct and elimination of the same variable making a different equation with at least two terms correct Correct equation in one variable with two correct equations in the same two variables Two correct values with two correct equations in the same two variables a = -2 $b = 4$ $c = 3with two correct equations in the$	an equation with at least two terms correctand elimination of the same variable making a different equation with at least two terms correctM1depCorrect equation in one variable with two correct equations in the same two variablesM1depTwo correct values with two correct equations in the same two variablesM1depTwo correct values with two correct equations in the same two variablesA1 $a = -2$ $b = 4$ $c = 3$ with two correct equations in theA1

	Additional Guidance						
	The two correct equations in the same two variables referred to in the scheme are a pair from one of these columns						
	15b - 13c = 21	5a + 3c = -1	13a + 9b = 10				
	5b - 7c = -1	5a + 11c = 23	7a + 11b = 30				
	5b + c = 23	10a + 14c = 22	2a - 14b = -60				
	All equations have ec eg equivalents for 5		5a - 3c = 1 and $5a =$	-1 - 3c			
		ariables must have te = 4 – 5 requires simp	rms collected lification to $5a + 3c = -$	-1			
	0a + 15b - 13c = 21	is equivalent to 15b -	- 13c = 21 etc				
17	Equations with two terms correct include eg1 (For $5b + c = 23$) $5b + c = 10$ and $-5b - c = 2$ and $5b - 3c = 23$						
cont	eg2 (For $5a + 3c = -1$) $5a + 6c = -1$ and $-5a - 3c = 4$ and $5a = 2 - 3c$						
	For equations with two terms correct the signs can be ignored if the modulus of the numbers in the correct equation are unchanged						
	eg For the correct equation $5b - 7c = -1$ (so modulus 5, 7 and 1)						
	equations with two terms correct include 5h + 7c = 1 and $5h - 7c = 1$ and $5h - 7c = 1$ and $5h - 7c + 1 = 0$						
	5b + 7c = 1 and $5b - 7c = 1$ and $-5b - 7c = 1$ and $-5b - 7c + 1 = 0$						
	Up to M3 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts						
	Elimination of variables may be seen from other approaches						
	eg rearranges 1st equation to $a = 4 - 3b + 2c$ and substitutes into the 2nd and 3rd equations						
	Correct values with n	o working			Zero		
	Matrix method involving row reduction is equivalent to the methods in the mark scheme						
	Correct inverse matri	x seen with three corr	ect solutions		M3A2		

Q	Answer	Mark	Comments
	$\frac{40}{3+7} \times 7$ or 28	M1	oe eg $40 - \frac{40}{3+7} \times 3$ or $40 - 12$ may be seen on diagram may be implied
	20^{2} + their 28^{2} or $400 + 784$ or 1184 or $4\sqrt{74}$ or [34.4, 34.41]	M1	oe eg $\sqrt{20^2 + \text{their}28^2}$ or $\sqrt{1184}$ their 28 must be < 40 may be seen on diagram
18	$40^2 + 9^2$ or $1600 + 81$ or 1681 or 41	M1	oe eg $\sqrt{40^2 + 9^2}$ or $\sqrt{1681}$ may be seen on diagram
	their 1681 = 25^2 + their 1184 - 2 × 25 × $\sqrt{\text{their1184}}$ × cos x	M1dep	oe $eg \cos^{-1} \frac{25^2 + their1184 - their1681}{2 \times 25 \times \sqrt{their1184}}$ or $\cos^{-1} [0.07, 0.07442]$ dep on 2nd and 3rd M1 x may be APC or A etc
	[85.7, 86]	A1	

	Additional Guidance				
	Up to M4 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts				
	If their PG is 28 do not allow use of a value other than 28 in subsequent working				
	$\frac{40}{3+7} \times 3 = 12$	M0			
	$20^2 + 12^2 = 544$	M1			
	$40^2 + 9^2 = 1681$	M1			
18 cont	$\cos^{-1}\frac{25^2 + 544 - 1681}{2 \times 25 \times \sqrt{544}}$	M1A0			
	4th M1 Condone $\cos^{-1} = 0.07$ for $\cos^{-1} 0.07$ etc				
	4th M1 oes must be a fully correct method eg Uses cosine rule to work out angle PCA then uses sine rule to work out angle APC Must get to correct sine rule equation with no errors in method				
	Missing brackets must be recovered eg 4th M1 Do not allow $4\sqrt{74}^2$ unless recovered in subsequent working				
	When AP is used it must be 25				

Q	Answer	Mark	Comments		
	Alternative method 1 Expands $(3x + 4)(2x - 3)$ first				
	$6x^2 - 9x + 8x - 12$ or $6x^2 - x - 12$	M1	oe 4 terms with at least 3 correct implied by $6x^2 - x + k$ or $px^2 - x - 12$ where k and p are non-zero constants may be seen in a grid		
	$\begin{array}{r} 30x^3 - 45x^2 + 40x^2 - 60x - 12x^2 \\ + 18x - 16x + 24 \\ \text{or} \\ 30x^3 - 5x^2 - 60x - 12x^2 + 2x + 24 \end{array}$	M1	oe full expansion with correct multiplication of their 3 or 4 terms by 5x or –2 may be seen in a grid		
	$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order		
19	Alternative method 2 Expands $(2x - 3)(5x - 2)$ first				
	$10x^2 - 4x - 15x + 6$ or $10x^2 - 19x + 6$	M1	oe 4 terms with at least 3 correct implied by $10x^2 - 19x + k$ or $px^2 - 19x + 6$ where k and p are non-zero constants may be seen in a grid		
	$\begin{array}{r} 30x^3 - 12x^2 - 45x^2 + 18x + 40x^2 \\ - 16x - 60x + 24 \\ \text{or} \\ 30x^3 - 57x^2 + 18x + 40x^2 - 76x \\ + 24 \end{array}$	M1	oe full expansion with correct multiplication of their 3 or 4 terms by 3x or 4 may be seen in a grid		
	$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order		

Mark scheme and Additional Guidance continues on the next page

	Alternative method 3 Expands $(3x + 4)(5x - 2)$ first			
	$15x^2 - 6x + 20x - 8$ or $15x^2 + 14x - 8$	M1	oe 4 terms with at least 3 correct implied by $15x^2 + 14x + k$ or $px^2 + 14x - 8$ where k and p are non-zero comay be seen in a grid	
	$\begin{array}{c} 30x^3-12x^2+40x^2-16x-45x^2\\ +18x-60x+24\\ \text{or}\\ 30x^3+28x^2-16x-45x^2-42x\\ +24 \end{array}$	M1	oe full expansion with correct mu of their 3 or 4 terms by 2x or - may be seen in a grid	•
	$30x^3 - 17x^2 - 58x + 24$	A1	terms in any order	
	Additional Guidance			
19	For terms seen in a grid accept $8x$ for $+8x$ etc			
cont	2nd M1 A full expansion will be 8 terms if 4 terms are used in first expansion A full expansion will be 6 terms if 3 terms are used in first expansion			
	Alt 1 $6x^2 + 9x - 8x - 12$ only 2 terms correct $(6x^2 + 9x - 8x - 12)(5x - 2)$			MO
	$= 30x^{3} + 45x^{2} - 40x^{2} - 60x - 12x^{2} + 18x - 16x + 24$ 8 terms with correct multiplication of their 4 terms by 5x			M1A0
	Alt 2 $10x^2 - 19x - 5$ implied 4 terms with 3 correct $(3x + 4)(10x^2 - 19x - 5) = 30x^3 - 54x^2 - 15x + 40x^2 - 76x - 20$ 6 terms with correct multiplication of their 3 terms by 4			M1 M1A0
	1st M1 with a 4-term expansion followed by incorrect simplification to 3 terms can still score the 2nd M1 using their 3 terms			
	One single expansion is full marks or	zero		

Q	Answer	Mark	Comments
20(a)	Shows substitution of $x = \frac{1}{2}$	M1	eg $2 \times \left(\frac{1}{2}\right)^3 + 11 \times \left(\frac{1}{2}\right)^2 + 12 \times \frac{1}{2} - 9$ or $2 \times \frac{1}{8} + 11 \times \frac{1}{4} + 12 \times \frac{1}{2} - 9$ or $\frac{1}{4} + \frac{11}{4} + 6 - 9$
20(0)	Shows substitution of $x = \frac{1}{2}$ and evaluates to zero	A1	eg $2 \times \left(\frac{1}{2}\right)^3 + 11 \times \left(\frac{1}{2}\right)^2 + 12 \times \frac{1}{2} - 9 = 0$ or $2 \times \frac{1}{8} + 11 \times \frac{1}{4} + 12 \times \frac{1}{2} - 9 = 0$ or $\frac{1}{4} + \frac{11}{4} + 6 - 9 = 0$

			Addition	al Guidance	
	Allow use of 0.5 and				
	eg1 $2(0.5)^3 + 11(0)$	M1A1			
	$eg2 2\left(\frac{1}{8}\right) + 11\left(\frac{1}{4}\right)$	$\left(\frac{1}{2}\right) + 12\left(\frac{1}{2}\right) -$	- 9		M1A0
	Allow working in sta	ges			
	eg $2(0.5)^3 + 11(0.5)^3$) ² + 12(0.5) =	9 9 9 9	= 0	M1A1
	Condone incorrect	use of =			
	eg $2(0.5)^3 + 11(0.5)^3$) ² + 12(0.5) =	= 9 - 9 = 0		M1A1
	Condone $2 \times \frac{1}{2}^3$				
	Ignore algebraic div				
20(a) cont	Only stating $f\left(\frac{1}{2}\right)$ of	MOAO			
	Calculation error(s)				
	eg1 $2 \times \left(\frac{1}{2}\right)^3 + 11$	M1A0			
	eg2 $\frac{1}{4} + \frac{11}{4} + 6 -$	M1A0			
	May be seen as syr eg				
	2	11	12	_9	
	0.5	1	6	9	M1A1
	2	12	18	0	
	(with the bottom right entry blank award M1A0)				
	(with an error award	I M0A0)			

Q	Answer	Mark	Comments
	Alternative method 1		
	x ² + 6x or 2 × $(-3)^3$ + 11 × $(-3)^2$ + 12 × (-3)		oe eg $x^2 + 6x \dots$ $2x-1)2x^3 + 11x^2 + 12x - 9$ or
	- 9	M1	$(2x-1)(x^2 + bx + c)$ and $b = 6$ or $2 \times -27 + 11 \times 9 + 12 \times -3 - 9$ or $-54 + 99 - 36 - 9$
	$x^{2} + 6x + 9$ or $(x + 3)(x + 3)$ or $(x + 3)^{2}$	M1dep	oe eg $x^2 + 6x + 9$ $2x-1)2x^3 + 11x^2 + 12x - 9$ or $(2x-1)(x^2 + bx + c)$ and $b = 6$ and $c = 9$
20(b)	$x^{2} + 6x + 9 \text{ and } (x + 3)(x + 3)$ or $x^{2} + 6x + 9 \text{ and } \frac{-6 \pm \sqrt{6^{2} - 4 \times 1 \times 9}}{2 \times 1}$ or $x^{2} + 6x + 9 \text{ and } 6^{2} - 4 \times 1 \times 9 = 0$ or (2x - 1)(x + 3)(x + 3)	M1dep	oe eg $x^2 + 6x + 9$ and $(x + 3)^2$ or $x^2 + 6x + 9$ and $\frac{-6}{2}$ or $x^2 + 6x + 9$ and $36 - 36 = 0$ or $(2x - 1)(x + 3)^2$
	M3 and indication that there are exactly two solutions	A1	eg1 x^2 + 6x + 9 and $(x + 3)(x + 3)$ and 0.5 and -3 eg2 x^2 + 6x + 9 and $\frac{-6\pm\sqrt{6^2-4\times1\times9}}{2\times1}$ and 0.5 and -3 eg3 $(2x - 1)(x + 3)(x + 3)$ and repeated bracket so exactly two solutions/roots/answers/factors

Mark scheme and Additional Guidance continue on the next four pages

	Alternative method 2		
	$6x^{2} + 22x + 12 = 0$ or $(6x + 4)(x + 3) = 0$ or $\frac{-22 \pm \sqrt{22^{2} - 4 \times 6 \times 12}}{2 \times 6}$ or $\frac{-22 \pm \sqrt{196}}{12}$	M1	condone omission of = 0 oe eg $(2x + 6)(3x + 2) = 0$ or $2(x + 3)(3x + 2) = 0$ or $-\frac{11}{6} \pm \sqrt{-2 + \frac{121}{36}}$ or $-\frac{11}{6} \pm \sqrt{\frac{49}{36}}$
20(b) cont	$x = -\frac{2}{3}$ and $x = -3$	M1dep	allow [–0.67, –0.66] for $-\frac{2}{3}$
	$x = -\frac{2}{3}$ and (-3, 0)	M1dep	allow [-0.67, -0.66] for $-\frac{2}{3}$
		Widep	ignore y-coordinate for $x = -\frac{2}{3}$ (-3, 0) may be seen on a graph
	M3 and indication that there are exactly two solutions	A1	eg x = $-\frac{2}{3}$ and (-3, 0) and a turning point on the x-axis so two solutions/roots

Mark scheme and Additional Guidance continue on the next three pages

	Alternative method 3		
	Sketch of cubic graph with maximum turning point at (-3, 0)	M1	condone minimum turning point at (-3, 0)
20(b)	Sketch of cubic graph with maximum turning point at (–3, 0) and minimum turning point in the third quadrant	M1dep	
20(b) cont	Sketch of cubic graph with maximum turning point at (-3, 0) and minimum turning point in the third quadrant and intersecting the positive x-axis at $\frac{1}{2}$	M1dep	-3 and $\frac{1}{2}$ must both be correctly labelled on the x-axis
	M3 and indication that there are exactly two solutions	A1	eg M3 and 0.5 and –3

Additional Guidance is on the next two pages

				Additional	Guidance	
	Up to M3 m even if this					
	Alt 1 Up to eg	the first two	marks may	be seen in	a grid	
		x ²	+6x	+9		
	2x	2x ³	12x ²	18x		M1M1
	1	- x ²	-6x	- 9		
	Condone m	issing + syr	nbols in top	row unless	subsequently contradicted	
	Alt 1 $x^2 + 6x + 9$ or $(x + 3)(x + 3)$ or $(x + 3)^2$					
	Alt 1 $(2x-1)(x+3)(x+3)$ or $(2x-1)(x+3)^2$					
	Alt 1 $(2x - 1)(x + 3)(x + 3)$ with solutions 0.5 and -3					M1M1M1A1
20(b) cont	Alt 1 $2x^2 + 5x - 3 = (2x - 1)(x + 3)$ 0.5 and -3					Zero
	Alt 1 Exam					
	eg1 x = 0.5					
	eg2 x = 0.5					
	eg3 (2x-1					
	eg4 (2x-1					
	Alt 1 These solutions					
	eg1 (2x-1	eg1 $(2x-1)(x+3)(x+3)$ 3 and 0.5				
	eg2 (x + 3)					
	Alt 1 Ignore other substitution attempts if using factor theorem for 1st M1					
	Alt 1 Allow absence of multiplication signs in factor theorem					
	eg 2(-3) ³ +	- 11(3) ² + 7	12(-3) - 9			M1
	Alt 1 Conde	one incorred	t use of =			
	eg 2(-3) ³ +	$-11(-3)^2 + 2$	12(3) = 9	9		M1

Additional Guidance continues on the next page

		Alt 1 Allow working in stages eg $2(-3)^3 + 11(-3)^2 + 12(-3) = 9$ $9 - 9 = 0$					
	Alt 1 Only	stating f(-3	B) or only st	tating f(-3)	= 0		MO
	Alt 1 May t eg	Alt 1 May be seen as synthetic division eg					
		2	11	12	-9		
	-3		11 6	-15	9		M1
20(b) cont		2	5	-3	0		
	Working in (a) eg algebraic division that is not used in (b) cannot score in (b) eg (a) $\frac{x^2 + 6x + 9}{2x - 1 \sqrt{2x^3 + 11x^2 + 12x - 9}}$					nnot score in (b)	
	(b) Not attempted						MO
	Working in (a) eg algebraic division that is used in (b) can score in (b)					ore in (b)	
	eg (a) (2x	$(-1)(x^2 + 6)$	6x + 9)				
	(b) Stu	dent shows	s an arrow f	rom their w	orking in (a)		M1M1

Q	Answer	Mark	Comments			
	Alternative method 1					
	tan x = $\sqrt{\frac{3}{2}}$ or tan x = $\frac{\sqrt{6}}{2}$ or [50.7, 50.8] or 51 or [230.7, 230.8] or 231	M1	oe eg tan ⁻¹ $\sqrt{\frac{3}{2}}$ allow [1.22, 1.225] for $\sqrt{\frac{3}{2}}$			
	tan x = $-\sqrt{\frac{3}{2}}$ or tan x = $-\frac{\sqrt{6}}{2}$ or [-50.8, -50.7] or -51 or [129.2, 129.3] or 129 or [309.2, 309.3] or 309	M1	oe eg tan ⁻¹ – $\sqrt{\frac{3}{2}}$ allow [–1.225, –1.22] for – $\sqrt{\frac{3}{2}}$			
21	50.8 and 129.2 and 230.8 and 309.2 with no other angles in range [0, 360]	A2	A1 [50.7, 50.8] or 51 and [230.7, 230.8] or 231 or [129.2, 129.3] or 129 and [309.2, 309.3] or 309			
21	Alternative method 2					
	sin x = $\sqrt{\frac{3}{5}}$ or sin x = $\frac{\sqrt{15}}{5}$ or [50.7, 50.8] or 51 [129.2, 129.3] or 129	M1	oe eg sin ⁻¹ $\sqrt{\frac{3}{5}}$ allow [0.77, 0.775] for $\sqrt{\frac{3}{5}}$			
	sin x = $-\sqrt{\frac{3}{5}}$ or sin x = $-\frac{\sqrt{15}}{5}$ or [-50.8, -50.7] or -51 [230.7, 230.8] or 231 or [309.2, 309.3] or 309	M1	oe eg sin ⁻¹ – $\sqrt{\frac{3}{5}}$ allow [–0.775, –0.77] for – $\sqrt{\frac{3}{5}}$			
	50.8 and 129.2 and 230.8 and 309.2 with no other angles in range [0, 360]	A2	A1 [50.7, 50.8] or 51 and [129.2, 129.3] or 129 or [230.7, 230.8] or 231 and [309.2, 309.3] or 309			

Mark scheme and Additional Guidance continues on the next 2 pages

	Alternative method 3		
	$\cos x = \sqrt{\frac{2}{5}}$ or $\cos x = \frac{\sqrt{10}}{5}$ or [50.7, 50.8] or 51 or [309.2, 309.3] or 309	M1	oe eg cos ⁻¹ $\sqrt{\frac{2}{5}}$ allow [0.63, 0.6325] for $\sqrt{\frac{2}{5}}$
21 cont	cos x = $-\sqrt{\frac{2}{5}}$ or cos x = $-\frac{\sqrt{10}}{5}$ or [129.2, 129.3] or 129 or [230.7, 230.8] or 231	M1	oe eg cos ⁻¹ – $\sqrt{\frac{2}{5}}$ allow [–0.6325, –0.63] for – $\sqrt{\frac{2}{5}}$
	50.8 and 129.2 and 230.8 and 309.2 with no other angles in range [0, 360]	A2	A1 [50.7, 50.8] or 51 and [309.2, 309.3] or 309 or [129.2, 129.3] or 129 and [230.7, 230.8] or 231

Additional Guidance is on the next page

	Additional Guidance	
	Allow t for tan x etc	
	$\tan x = \pm \sqrt{\frac{3}{2}}$	M1M1
	Ignore any solutions outside the range [0, 360]	
	All four solutions with extra solutions in range [0, 360] scores M1M1A1 eg 50.8 and 230.8 and 129.2 and 309.2 and 180 and 60	M1M1A1
	For A1 there may be extra solutions in range eg1 50.77 and 230.8 and 180 eg2 50.8 and 230.8 and 129.2 and 90	M1M0A1 M1M1A1
	If answer line is blank, award any marks gained in the working lines	
	If correct angles are found in the working lines but only some are listed on the answer line award any M marks gained from the working lines	
04	award any A marks gained from the answer line	
21 cont	eg1 working lines tan x = $\pm \sqrt{\frac{3}{2}}$ 50.8 230.8 129.2 309.2 answer line 50.76 230.76 129.2	M1M1 A1
	eg2 working lines tan x = $\sqrt{\frac{3}{2}}$ 50.8 230.8 answer line 50.8	M1M0A0
	eg3 working lines tan x = $\sqrt{\frac{3}{2}}$ 50.8 230.8 tan x = $-\sqrt{\frac{3}{2}}$ 129.2	M1M1
	answer line 129.2	A0
	Answers only (with no extra solutions in range) can score up to 4 marks 4 correct \rightarrow 4 marks 3 correct \rightarrow 3 marks 4 correct \rightarrow 2 marks 4 correct \rightarrow 2 marks	
	$2 \text{ correct} \rightarrow 2 \text{ marks} \qquad 1 \text{ correct} \rightarrow 1 \text{ mark}$	
	M1M0A1 or M0M1A1 are possible eg1 tan x = $\sqrt{\frac{3}{2}}$ 50.76 230.8	M1M0A1
	eg2 tan x = $-\sqrt{\frac{3}{2}}$ 129.2 and 309.2	M0M1A1
	Embedded answers can score up to M1M1A1	

Q	Answer	Mark	Comments
	Alternative method 1 Uses power	s of 2	
	$(16^{x} =) 2^{4x} \text{ or } ((16^{x})^{x} =) (2^{4})^{x^{2}}$	M1	implied by $((16^x)^x =) 2^{4x^2}$ may be implied by 3rd M1
	$((16^{x})^{x} =) 2^{4x^{2}}$	M1dep	implied by $2^{4x^2 + 3x}$ may be implied by 3rd M1
22	Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg $4x^2 = -3x$ or $4x^2 + 3x = 0$ or $4x = -3$ or $2^{4x^2} = 2^{-3x}$ or $2^{4x^2 + 3x} = 2^0$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$
	M3 and $-\frac{3}{4}$	A1	oe ignore inclusion of answer 0

Mark scheme and Additional Guidance continues on the next 3 pages

	Alternative method 2 Uses power	s of 16	
	$((16^{x})^{x} =) 16^{x^{2}}$ or $(\frac{1}{2^{3x}} =) \frac{1}{(16^{\frac{1}{4}})^{3x}}$	M1	implied by $\left(\frac{1}{2^{3x}}\right) = \frac{1}{16^{\frac{3x}{4}}}$ or $\left(\frac{1}{2^{3x}}\right) = 16^{-\frac{3x}{4}}$ may be implied by 3rd M1
22 cont	$((16^{x})^{x} =) 16^{x^{2}}$ and $\left(\frac{1}{2^{3x}}\right) = \frac{1}{16^{\frac{3x}{4}}}$	M1dep	oe eg ((16 ^x) ^x =) 16 ^{x²} and $\left(\frac{1}{2^{3x}}\right) = 16^{-\frac{3x}{4}}$ may be implied by 3rd M1
	Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg x ² = $-\frac{3}{4}x$ or $4x^2 + 3x = 0$ or $16^{x^2} = 16^{-\frac{3x}{4}}$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$
	M3 and $-\frac{3}{4}$	A1	oe ignore inclusion of answer 0

Mark scheme and Additional Guidance continues on the next 2 pages

	Alternative method 3 Uses power	s of 4	
	(16 ^x =) 4 ^{2x} or ((16 ^x) ^x =) (4 ²) x ² or $\left(\frac{1}{2^{3x}}\right) = \frac{1}{\left(\frac{1}{4^2}\right)^{3x}}$		implied by $((16^x)^x =) 4^{2x^2}$ or $\left(\frac{1}{2^{3x}}\right) = \frac{1}{4^{\frac{3x}{2}}}$ or $\left(\frac{1}{2^{3x}}\right) = 4^{-\frac{3}{2}x}$ may be implied by 3rd M1
22	$((16^{x})^{x} =) 4^{2x^{2}}$ and $(\frac{1}{2^{3x}} =) \frac{1}{\frac{3x}{4^{\frac{3x}{2}}}}$	M1dep	oe ((16 ^x) ^x =) 4^{2x^2} and $\left(\frac{1}{2^{3x}}\right) = 4^{-\frac{3}{2}x}$ may be implied by 3rd M1
cont	Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg $2x^2 = -\frac{3}{2}x$ or $4x^2 + 3x = 0$ or $4^{2x^2} = 4^{-\frac{3}{2}x}$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$
	M3 and $-\frac{3}{4}$	A1	oe ignore inclusion of answer 0

Mark scheme and Additional Guidance continues on the next page

	Alternative method 4 Takes the xth root of each side and uses powers of 2			
22 cont	(16 ^x =) 2 ^{4x} or 16 ^x = $\left(\frac{1}{2^{3x}}\right)^{\frac{1}{x}}$	M1	oe eg $16^{x} = \sqrt[x]{\frac{1}{2^{3x}}}$ or $16^{x} = \frac{1}{2^{3}}$ or $16^{x} = 2^{-3}$ may be implied by 3rd M1	
	$2^{4x} = \left(\frac{1}{2^{3x}}\right)^{\frac{1}{x}}$	M1dep	oe eg $2^{4x} = \frac{1}{2^3}$ may be implied by 3rd M1	
	Correct quadratic equation or correct linear equation or correct equation involving indices with the same base	M1dep	eg 4x = -3 or $2^{4x} = 2^{-3}$ do not allow if the equation is from incorrect working do not allow if the only equation is $x = -\frac{3}{4}$	
	M3 and $-\frac{3}{4}$	A1	oe ignore inclusion of answer 0	
	Additional Guidance			
	Up to M2 may be awarded for correct work with no, or incorrect answer, even if this is seen amongst multiple attempts			
	Allow $2^{4 \times x \times x}$ for 2^{4x^2} etc			
	Responses using other powers eg powers of 8 can be escalated			Escalate
	Ignore simplification or conversion if correct answer seen			