Mark Scheme 4752 June 2007

	I w /-	Ι.		, ,
1	$(i) -\sqrt{3}$	1	Accept any exact form	
	(ii) $\frac{5}{3}\pi$	2	accept $\frac{5\pi}{3}$, 1 $\frac{2}{3}\pi$. M1 π rad = 180° used correctly	3
2	$y' = 6 \times \frac{3}{2} x^{\frac{1}{2}} \text{ or } 9x^{\frac{1}{2}} \text{ o.e.}$	2	1 if one error in coeff or power, or extra term	
	$y'' = \frac{9}{2}x^{-\frac{1}{2}}$ o.e.	1	f.t. their y' only if fractional power	
	$\sqrt{36} = 6$ used interim step to obtain $\frac{3}{4}$	M1 A1	f.t. their y" www answer given	5
3	(i) y = 2f(x)	2	1 if 'y=' omitted [penalise only once]	
	(ii) y = f(x-3)	2	M1 for $y = kf(x), k > 0$ M1 for $y = f(x + 3)$ or $y = f(x - k)$	4
4	(i) 11 27 or ft from their 11 (ii) 20	1 1 2	M1 for $1 \times 2 + 2 \times 3 + 3 \times 4$ soi, or 2,6,12 identified, or for substituting $n = 3$ in standard formulae	4
5	$\theta = 0.72 \text{ o.e}$ 13.6 [cm]	3	M1 for $9 = \frac{1}{2} \times 25 \times \theta$ No marks for using degrees unless attempt to convert B2 ft for $10 + 5 \times \text{their } \theta$ or for 3.6 found or M1 for $s = 5 \theta$ soi	5
6	(i) log a 1 = 0, log a a = 1(ii) showing both sides equivalent	1+1	NB, if not identified, accept only in this order M1 for correct use of 3 rd law and M1 for correct use of 1 st or 2 nd law. Completion www A1. Condone omission of <i>a</i> .	5
7	(i) curve with increasing gradient any curve through (0, 1) marked	G1 G1	correct shape in both quadrants	
	(ii) 2.73	3	M1 for $x \log 3 = \log 20$ (or $x = \log_3 20$) and M1 for $x = \log 20 \div \log 3$ or B2 for other versions of 2.726833 or B1 for other answer 2.7 to 2.8	5
8	(i) $2(1 - \sin^2 \theta) + 7 \sin \theta = 5$	1	for $\cos^2 \theta + \sin^2 \theta = 1$ o.e. used	
	(ii) $(2 \sin \theta - 1)(\sin \theta - 3)$ $\sin \theta = \frac{1}{2}$ 30° and 150°	M1 DM1 A1 A1	1 st and 3 rd terms in expansion correct f.t. factors B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, 30°, 150° plus extra soln(s) scores 1	5

	Ι.	1 6 2 10 10	3.71	1	1 1
9	i	$y' = 6x^2 - 18x + 12$	M1	condone one error	
		= 12	M1	subst of $x = 3$ in their y'	
		y = 7 when $x = 3$	B1		
		tgt is $y - 7 = 12(x - 3)$	M1	f.t. their y and y'	
		verifying $(-1, -41)$ on tgt	A1	or B2 for showing line joining (3, 7) and	_
				(-1, -41) has gradient 12	5
	ii	y' = 0 soi	M1	Their y'	
		quadratic with 3 terms	M1	Any valid attempt at solution	
		x = 1 or 2	A1	or A1 for (1, 3) and A1 for (2,2) marking	
		y = 3 or 2	A1	to benefit of candidate	4
	iii	cubic curve correct orientation	G1		
		touching x- axis only at (0.2,0)	G1		
		max and min correct	G1	f.t.	
		curve crossing y axis only at -2	G1		3
10	i	970 [m]	4	M3 for attempt at trap rule	
				½×10×(28+22+2[19+14+11+12+16])	
				M2 with 1 error, M1 with 2 errors.	
				Or M3 for 6 correct trapezia, M2 for 4	
				correct trapezia, M1 for 2 correct	4
				trapezia.	
	ii	concave curve or line of traps is	1	Accept suitable sketch	
		above curve			
		$(19+14+11+11+12+16) \times 10$	M1	M1 for 3 or more rectangles with values	3
		830 to 880 incl.[m]	A1	from curve.	
	iii	$t = 10, v_{\text{model}} = 19.5$	B1		
		difference = 0.5 compared with 3%			
		of $19 = 0.57$	B1f.t.	or $\frac{0.5}{19} \times 100 \approx 2.6$	
				19 ^ 100 ~ 2.0	2
	iv	$28t - \frac{1}{2}t^2 + 0.005t^3$ o.e.	M1	2 terms correct, ignore + c	
		value at 60 [- value at 0]	M1	ft from integrated attempt with 3 terms	
		960	A1		3
11	ai	13	1		1
	aii	120	2	M1 for attempt at AP formula ft their a,	
		1.2.5		$d \text{ or for } 3 + 5 + \dots + 21$	2
	bi	125	2	$1 (5)^3$	
		1296		M1 for $\frac{1}{6} \times \left(\frac{5}{6}\right)^3$	2
	ii	a = 1/6, r = 5/6 s.o.i.	1+1	If not specified, must be in right order	
		$S_{\infty} = \frac{\frac{1}{6}}{1 - \frac{5}{6}}$ o.e.	1		3
	iii	0	M1		
		$\left(\frac{5}{6}\right)^{n-1} < 0.006$	1,11		
		$(n-1)\log_{10}\left(\frac{5}{6}\right) < \log_{10}0.006$	M1	condone omission of base, but not brackets	
		$n-1 > \frac{\log_{10} 0.006}{\log_{10} \left(\frac{5}{6}\right)}$	DM1		4
		$n_{\min} = 30$	B1	NB change of sign must come at correct	
		Or 1. (7.(5) ⁿ⁻¹ 1. 0.001	M1	place	
		$\log(1/6) + \log(5/6)^{n-1} < \log(0.001)$	M1		
		$(n-1)\log(5/6) < \log(0.001/(1/6))$	1411		