Oxford Cambridge and RSA Examinations
Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

MECHANICS 2, M2

4762

MARK SCHEME

Qu	Answer	Mark	Comment
1(i)	Before $\mathrm{P} \rightarrow$ $\leftarrow \mathrm{Q}$ $2 \mathrm{~ms}^{-1}$ $4 / 3 \mathrm{~ms}^{-1}$ After $\quad \mathrm{PQ} \rightarrow$ PCLM $55 \times 2-45 \times \frac{4}{3}=100 v$ $v=0.5 \mathrm{so} 0.5 \mathrm{~ms}^{-1}$ in original direction of Percy $\rightarrow 55(0.5-2)=-82.5 \mathrm{Ns}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { F1 } \\ \text { M1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	PCLM applied Signs correct and consistent with the question Either explicit or implied by diagram Attempt at impulse Must have direction explicit (diagram will do)
1(ii)	Before $\mathrm{PQ} \rightarrow$ $\mathrm{R} \rightarrow$ $0.5 \mathrm{~ms}^{-1}$ $v \mathrm{~ms}^{-1}$ After $\mathrm{PQ} \rightarrow$ $\mathrm{R} \rightarrow$ $0.1 \mathrm{~ms}^{-1}$ $v^{\prime} \mathrm{ms}^{-1}$ PCLM $\begin{aligned} & 50+60 v=10+60 v^{\prime} \\ & 3 v^{\prime}-3 v=2 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	PCLM Any Form
	NEL $\begin{aligned} & \frac{v^{\prime}-0.1}{v-0.5}=-0.2 \\ & v^{\prime}+0.2 v=0.2 \end{aligned}$	M1 A1	Including consistent use of signs Any form
	Solving $v=\frac{7}{18}, v^{\prime}=\frac{5}{18}$ So before, $-\frac{7}{18} \mathrm{~ms}^{-1}$ (opp direction to PQ) after, $\frac{5}{18} \mathrm{~ms}^{-1}$ (same direction as PQ)	M1 A1 A1 [7]	Award max A1 for final answers unless directions both specified or implied by diagram
1(iii)	Ball hits ice at vert speed $\sqrt{2 \times 0.4 \times 9.8}$ $=2.8 \mathrm{~ms}^{-1}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	
	Linear momentum conserved horiz NEL on vert cpt gives $1.4 \mathrm{~ms}^{-1}$ up so after bounce $0.1 \mathrm{~ms}^{-1}$ horiz and $1.4 \mathrm{~ms}^{-1}$ up Angle is $\arctan \left(\frac{1.4}{0.1}\right) \approx 86^{\circ}$	M1 B1 A1 [5]	May be implied e.g. in diagram

Qu	Answer	Mark	Comment
2(i)	$\begin{aligned} & (20 g \sin 30+50) \times 4 \\ & =592 \mathrm{~W} \end{aligned}$	M1 B1 A1 [3]	Use of $P=F v$ Weight term
2(ii)	$\begin{aligned} & 20 \times 9.8 \times 5 \times \sin 35-\frac{1}{2} \times 20 \times\left(6^{2}-4^{2}\right) \\ & =362.104 \text {.. so } 362 \mathrm{~J} \text { (3s.f.) } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { B1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Difference in GPE and KE GPE term Either KE term Accept 2 s.f.
2(iii)	$\begin{aligned} & 5 F=362.104 \ldots \text { so } F=72.4209 \ldots \\ & R=20 \times 9.8 \times \cos 35 \\ & \mu=0.4510 \ldots \text { so } 0.45(2 \text { s.f. }) \end{aligned}$	B1 B1 M1 E1 [4]	Use of $F=\mu R$
2(iv)	$\begin{aligned} & \mu m g \cos 35=m g \sin 35 \\ & \mu=0.70 \text { (2s.f.) } \end{aligned}$	M1 A1 [2]	Accept WW
2(v)	$\begin{aligned} & 72.2492 \ldots \times x+520-20 g x \sin 35 \\ & =\frac{1}{2} \times 20 \times 6^{2} \\ & x=3.982 \ldots \text { so } 3.98 \mathrm{~m}(2 \text { s.f. }) \end{aligned}$	M1 B1 A1 A1 A1 [5]	Use of work-energy Equation contains GPE term All terms present Signs correct (dependent on A1 above)
3(i)	$\begin{aligned} & 10\binom{\bar{x}}{\bar{y}}=2\binom{\frac{1}{2}}{\frac{\sqrt{3}}{2}}+2\binom{\frac{3}{2}}{\frac{\sqrt{3}}{2}}+3\binom{2.75}{\frac{3 \sqrt{3}}{4}}+3\binom{5}{\frac{3 \sqrt{3}}{2}} \\ & (2.725,1.516) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { E1,A1 } \\ {[6]} \end{gathered}$	Appropriate method Correct masses At least two x cpts correct At least two y cpts correct
3(ii)	cm gives a clockwise moment about C Reaction at A cannot give an a.c. moment	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$ [2]	Considering moments Complete argument
3(iii)	Moments about C $2 w=25 g \times 0.725$ $w=88.8125 \text { so about } 88.81 \mathrm{~N}$	M1 A1 B1 A1 [4]	Use of weight

AO	Range	Total	Question Number				
			$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
$\mathbf{1}$	$14-22$	17	2	7	5	3	
$\mathbf{2}$	$14-22$	21	7	2	3	9	
$\mathbf{3}$	$18-26$	18	5	5	4	4	
$\mathbf{4}$	$7-15$	7	3	-	2	2	
$\mathbf{5}$	$3-11$	9	1	4	4	-	
	Totals	$\mathbf{7 2}$	18	18	18	18	

