F331 Chemistry for Life

F331

Qu	Question		Expected Answers		Additional Guidance
1	(a)	(i)	skeletal 🗸	1	ALLOW recognisable spellings
		(ii)	2,2,4-trimethylpentane ✓✓	2	IGNORE gaps, dashes, hyphens, commas
					pentane√
					rest ✓
		(iii)	ring structure / arene / cyclic OR short(er) molecule ✓	1	ALLOW small
	(b)	(i)	burn measured mass / amount of fuel / octane ✓	5	ALLOW measure starting and finishing temperature / mass of octane / fuel DO NOT ALLOW just 'final' temp. recorded
			measure temp rise ✓		IGNORE reference to solution
			of a fixed volume / mass / amount of water \checkmark		
			use - energy transferred = mass of water x specific heat capacity (of water) x temp rise ✓		ALLOW q / energy = mc∆T or mcθ allow 'm' as mass of water unless conned eg ALLOW answer divided by moles burnt
			scale up to one mole of fuel / octane used / AW \checkmark		

Question	Expected Answers	Marks	Additional Guidance	
(ii)	 any two from 4: heat loss to surroundings / air / effect of draughts; etc ✓ heat losses to calorimeter / apparatus; ✓ incomplete combustion of fuel / lack of (enough) oxygen; ✓ evaporation of fuel (from wick); ✓ 	2	DO NOT ALLOW 'not standard conditions' / reference to data book values / AW DO NOT ALLOW 'enthalpy may escape' IGNORE evaporation of water / measurement error /	
(c) (i)	 ΔH₁ = enthalpy (change) of formation (of octane) ✓ ΔH₂ = enthalpy (change) of combustion of eight moles of carbon / (enthalpy (change) of formation of eight moles of carbon dioxide) ✓ ΔH₃ = enthalpy (change) of combustion of nine moles of hydrogen / (enthalpy (change) of formation of nine moles of water) ✓ ΔH₄ = enthalpy (change) of combustion of octane ✓ 	4	human errorALLOW omission of the words 'enthalpy change of'IGNORE references to oxygenALLOW appropriate symbols eg ΔH_f ALLOW ΔH_2 and ΔH_3 in either order. Score one out of two if numbers of moles not mentionedALLOW $\Delta H_2 / \Delta H_3$ in terms of enthalpy changed of formation of 8 moles CO_2 and 9 moles of H_2O .DO NOT ALLOW any rearrangement of ΔH_1 etc	
(ii)	answer = $-248 \checkmark$	1		
	Total	16		

Mark Scheme

January 2010

F331

Que	Question		Expected Answers		Marks	Additional Guidance		
2	(a)	(i)		type of emission		3	One mark for each column:	
			property		β	Y		
			relative	+2	-1	0		
			charge					ALLOW none / dashes for 0's
			relative mass	4	0.00055	0		
			nature	helium nucleus	(nuclear) <u>electron /</u> correct symbol	very high frequency electromagnetic radiation		
			range in air	(few) cms / mm	few metres	very long		ALLOW 'short' for 'few cms'
			stopped by	tissue paper	metal foil	Lead / aluminium / thick metal (sheet) / concrete		DO NOT ALLOW 'Not very far' / AW (too vague)
			deflection by an electric field	n electric Iow High / big / none	none		DO NOT ALLOW medium for β deflection DO NOT ALLOW neutral for γ deflection	
				\checkmark	\checkmark	\checkmark		
	(b)	(i) (ii)) ${}^{99}_{42} \text{Mo} \rightarrow {}^{9}_{-1}\beta + {}^{9}_{2}\beta$	²³ Tc √√			2	top line ✓
							bottom line ✓	
								ALLOW one mark for completely correct beta or Tc if other is wrong
) same atomic number ✓				2	OR
			different mass nu	ent mass number ✓				atoms of the same element \checkmark
								with different numbers / more / less of neutrons \checkmark

3

Mark Scheme

January 2010

F331	Mark Schem	January 2010	
Question	Expected Answers	Marks	Additional Guidance
(c) (i)	difficult to detect very small amounts of Ar-40 formed K-40 decayed / dating errors very large when so little decay has taken place / AW ✓	1	DO NOT ALLOW answers that talk only in terms of 'not even finished one half life'
(ii)	Ar^+ (allow Ar^{2^+}) \checkmark	1	ALLOW with <u>correct</u> mass / atomic numbers DO NOT ALLOW wrong symbol
(iii)	peak / bar / line at (mass numbers) 36, 38 and 40 \checkmark size / height of peak related to abundance \checkmark	2	mass numbers needed to score
(iv)	 (energy lost as) electrons go from higher to lower levels ✓ relationship of energy to frequency / wavelength ✓ gives a (specific) line(s) ✓ 	4	eg E = hf or in words mention of lines scores a mark
	energy gaps / levels different for different elements ✓ QWC – wavelength / frequency / frequencies must be spelled correctly		CON one mark if spelling incorrect
	Total	15	

Question		n	Expected Answers		Additional Guidance
3	(a)	(i)	(hydrocarbon) contains no <u>benzene</u> rings / not an arene √	1	DO NOT ALLOW contains no rings
		(ii)	<u>fractional</u> distillation ✓	1	
		(iii)	$C_{25}H_{52}$ + 38 $O_2 \rightarrow 25CO_2$ + 26H ₂ O \checkmark	1	
	(b)	(i)	unburnt hydrocarbon / C ₂₅ H ₅₂ ✓	1	ALLOW paraffin wax ALLOW CO ALLOW smaller hydrocarbon
		(ii)	carbon monoxide ✓ carbon / soot ✓	2	ALLOW water IGNORE oxides of nitrogen
	(c)	(i)	C ₃ H ₆ ✓	1	order of elements immaterial
		(ii)	110-130⁰ ✓	4	
			3 areas of electron density ✓		DO NOT ALLOW 3 'atoms' or 'electron pairs' ALLOW names or descriptions of electron groups eg double bond
			around central C ✓		ALLOW clear diagram or description
			areas of electron density / pairs repel as far apart as possible /		DO NOT ALLOW repel as much as possible
			minimize energy ✓		TAKE CARE repel and 'as far apart' run together for only one mark
					ALLOW bonds (but not atoms) repel
		(iii)	catalysts and reactants in different (physical) states \checkmark	1	
		(iv)	contain hole(s) / channels / porous / gaps / rings \checkmark	2	
			can trap branched / let through straight isomers \checkmark		
			Total	14	

Qı	Question		Expected Answers	Marks	Additional Guidance
4	(a)		mass number = 1 \checkmark atomic number = 0 \checkmark	2	
	(b)	(i)	moles of Be = $1.75/9 (0.19) \checkmark$ moles of Cu = $98.25/63.5 (1.55) \checkmark$	2	all usual ecf's apply (allow working to more / less sig. figs.) Max 1 if unit other than moles put in
		(ii)	11 scores all three $\sqrt[4]{\sqrt{4}}$ total no. of moles = 1.74 $\sqrt{4}$ %Be = 0.19/1.74 x 100 $\sqrt{4}$ (=10.919) Sig. figs. separate mark based on a followable calculation $\sqrt{4}$	3	ALLOW ecf's from (b)(i) ALLOW sig. figs. mark for a (wrong) calculation based on some given figures
	(c)		Delocalised electrons ✓ Regular array of cations / positive ions / residues ✓ Labels but any used must be correct√	3	 First two points can be on diagram or labels minimum of five cations shown (can touch) ALLOW positive atoms DO NOT ALLOW positive nucleus or positive metal
	(d)		$\stackrel{\textbf{XX}}{\overset{XX}}{\overset{XX}}{\overset{XX}}{\overset{XX}}{\overset{XX}}}}}}}$ 'correct' pairs on Be \checkmark 3 pairs on Cl {X}	2	DO NOT ALLOW ionic structure

Question	Expected Answers		Additional Guidance	
(e)	melting point (is different) ✓	3	ALLOW ORA throughout	
	(melting point) is high <u>er</u> in ionic compounds \checkmark		DO NOT ALLOW references to ionic solids / covalent gases liquids	
	AND		ALLOW boiling point Must be a comparison for 2 nd mark	
	Any one of: ionic compounds conduct electricity when in <u>solution / molten</u> ✓ OR ionic compounds (generally) <u>water</u> soluble / ora / AW ✓		Incorrect chemical explanation CON 2 nd mark eg reference to bond strengths	
			DO NOT ALLOW just 'conduct electricity'	
	Total	15		

Mark Scheme

January 2010

F331