F331 Chemistry for Life

Question			Expected Answers	Marks	Additional Guidance
1	(a)	(i)	skeletal \checkmark	1	ALLOW recognisable spellings
		(ii)	2,2,4-trimethylpentane $\checkmark \checkmark$	2	IGNORE gaps, dashes, hyphens, commas pentane \checkmark rest \checkmark
		(iii)	ring structure / arene / cyclic OR short(er) molecule \checkmark	1	ALLOW small
	(b)	(i)	burn measured mass / amount of fuel / octane measure temp rise of a fixed volume / mass / amount of water \downarrow use - energy transferred = mass of water x specific heat capacity (of water) x temp rise scale up to one mole of fuel / octane used / AW	5	ALLOW measure starting and finishing temperature / mass of octane / fuel DO NOT ALLOW just 'final' temp. recorded IGNORE reference to solution ALLOW q / energy $=m c \Delta T$ or mc θ allow ' m ' as mass of water unless conned eg ALLOW answer divided by moles burnt

Question		Expected Answers	Marks	Additional Guidance
	(ii)	any two from 4: heat loss to surroundings / air / effect of draughts; etc heat losses to calorimeter / apparatus; incomplete combustion of fuel / lack of (enough) oxygen; evaporation of fuel (from wick);	2	DO NOT ALLOW 'not standard conditions' / reference to data book values / AW DO NOT ALLOW 'enthalpy may escape’ IGNORE evaporation of water / measurement error / human error
(c)	(i)	$\Delta \mathrm{H}_{1}=$ enthalpy (change) of formation (of octane) $\Delta \mathrm{H}_{2}=$ enthalpy (change) of combustion of eight moles of carbon / (enthalpy (change) of formation of eight moles of carbon dioxide) $\Delta \mathrm{H}_{3}=$ enthalpy (change) of combustion of nine moles of hydrogen / (enthalpy (change) of formation of nine moles of water) $\Delta \mathrm{H}_{4}=$ enthalpy (change) of combustion of octane	4	ALLOW omission of the words 'enthalpy change of...' IGNORE references to oxygen ALLOW appropriate symbols eg $\Delta \mathrm{H}_{\mathrm{f}}$ ALLOW $\Delta \mathrm{H}_{2}$ and $\Delta \mathrm{H}_{3}$ in either order. Score one out of two if numbers of moles not mentioned ALLOW $\Delta \mathrm{H}_{2} / \Delta \mathrm{H}_{3}$ in terms of enthalpy changed of formation of 8 moles CO_{2} and 9 moles of $\mathrm{H}_{2} \mathrm{O}$. DO NOT ALLOW any rearrangement of $\Delta \mathrm{H}_{1}$ etc
	(ii)	answer $=-248 \checkmark$	1	
		Total	16	

Question		Expected Answers	Marks	Additional Guidance
(c)	(i)	difficult to detect very small amounts of Ar-40 formed K-40 decayed / dating errors very large when so little decay has taken place / AW \checkmark	1	DO NOT ALLOW answers that talk only in terms of 'not even finished one half life'
	(ii)	$\mathrm{Ar}^{+}\left(\right.$allow Ar^{2+}) \checkmark	1	ALLOW with correct mass / atomic numbers DO NOT ALLOW wrong symbol
	(iii)	peak / bar / line at (mass numbers) 36, 38 and $40 \checkmark$ size / height of peak related to abundance \checkmark	2	mass numbers needed to score
	(iv)	(energy lost as) electrons go from higher to lower levels \checkmark relationship of energy to frequency / wavelength \checkmark gives a (specific) line(s) \downarrow energy gaps / levels different for different elements QWC - wavelength / frequency / frequencies must be spelled correctly	4	eg $E=h f$ or in words mention of lines scores a mark CON one mark if spelling incorrect
		Total	15	

Question			Expected Answers	Marks	Additional Guidance
Q	(a)	(i)	(hydrocarbon) contains no benzene rings / not an arene \checkmark	1	DO NOT ALLOW contains no rings
		(ii)	fractional distillation \checkmark	1	
		(iii)	$\mathrm{C}_{25} \mathrm{H}_{52}+38 \mathrm{O}_{2} \rightarrow 25 \mathrm{CO}_{2}+26 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	
	(b)	(i)	unburnt hydrocarbon / $\mathrm{C}_{25} \mathrm{H}_{52} \checkmark$	1	ALLOW paraffin wax ALLOW CO ALLOW smaller hydrocarbon
		(ii)	carbon monoxide \checkmark carbon / soot	2	ALLOW water IGNORE oxides of nitrogen
	(c)	(i)	$\mathrm{C}_{3} \mathrm{H}_{6} \checkmark$	1	order of elements immaterial
		(ii)	$110-130^{\circ}$ 3 areas of electron density around central C areas of electron density / pairs repel as far apart as possible / minimize energy \downarrow	4	DO NOT ALLOW 3 'atoms' or 'electron pairs' ALLOW names or descriptions of electron groups eg double bond ALLOW clear diagram or description DO NOT ALLOW repel as much as possible TAKE CARE repel and 'as far apart' run together for only one mark ALLOW bonds (but not atoms) repel
		(iii)	catalysts and reactants in different (physical) states \checkmark	1	
		(iv)	contain hole(s) / channels / porous / gaps / rings \checkmark can trap branched / let through straight isomers \checkmark	2	
			Total	14	

Question		Expected Answers	Marks	Additional Guidance
4 (a)		mass number $=1$ atomic number $=0$	2	
(b)	(i)	$\begin{aligned} & \text { moles of } \mathrm{Be}=1.75 / 9(0.19) \checkmark \\ & \text { moles of } \mathrm{Cu}=98.25 / 63.5(1.55) \end{aligned}$	2	all usual ecf's apply (allow working to more / less sig. figs.) Max 1 if unit other than moles put in
	(ii)	11 scores all three total no. of moles $=1.74$ $\% \mathrm{Be}=0.19 / 1.74 \times 100 \checkmark(=10.919)$ Sig. figs. separate mark based on a followable calculation	3	ALLOW ecf's from (b)(i) ALLOW sig. figs. mark for a (wrong) calculation based on some given figures
(c)		Delocalised electrons Regular array of cations / positive ions / residues Labels but any used must be correct \checkmark	3	First two points can be on diagram or labels minimum of five cations shown (can touch) ALLOW positive atoms DO NOT ALLOW positive nucleus or positive metal
(d)		'correct' pairs on Be \checkmark 3 pairs on $\mathrm{Cl} \downarrow$	2	DO NOT ALLOW ionic structure

Question		Expected Answers	Marks	Additional Guidance
(e)	melting point (is different) \checkmark (melting point) is higher in ionic compounds \checkmark AND Any one of: ionic compounds conduct electricity when in solution / molten \checkmark OR ionic compounds (generally) water soluble / ora / AW \checkmark Total	ALLOW ORA throughout DO NOT ALLOW references to ionic solids / covalent gases liquids ALLOW boiling point Must be a comparison for 2 ${ }^{\text {nd }}$ mark		

