

GCE

Chemistry A

Unit H432A/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
√	Correct response
X	Incorrect response
<u> </u>	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
\checkmark	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

H432A/03	Mark S	June 201	
Question	Answer Marks		Guidance
1 (a)	 Throughout ALLOW bonding regions for bonded pairs ALLOW diagrams for communicating two bonds, two IGNORE responses about open lattice/tetrahedral structure 		nydrogen bonding in ice
	Ice Ice has hydrogen bonds/bonding ✓	3	ALLOW more hydrogen bonding/H bonds
	H₂O(g) 2 bonded pairs AND 2 lone pairs ✓ Repulsion Lone pairs repel more (than bonded pairs) ✓		 For H₂O(g), ALLOW water IGNORE hydrogen bonding
(b)	It increases/causes/contributes to global warming OR C–H bonds vibrate OR absorb IR ✓	1	ALLOW it is a greenhouse gas/increases temp
(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = CH_4 •5.74 H_2O OR 5.74 award 2 marks	2	Working to at least 3 SF but IGNORE 'trailing zeroes', e.g. ALLOW 16 for 16.0
	Mole ratio $n(CH_4) : n(H_2O) = \frac{13.4}{16.0} : \frac{86.6}{18.0}$ OR 0.8375 : 4.811 \checkmark		ALLOW algebraic approach, e.g. $n(CH_4) = n(CH_4 \cdot xH_2O)$ $\frac{13.4}{16.0} = \frac{100}{16.0 + 18x}$ x = 5.74
	Formula CH₄•5.74 H₂O OR 5.74 ✓		 ALLOW ECF from incorrect mole ratio For 1 mark, ALLOW x with < 2 DP: x = 5.7 x = 6
			 x = 5.73 from 0.8375 and 4.8 from 0.84 and 4.811 x = 5.71 from 0.84 and 4.8
(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE	4	

Question	Answer	Marks	Guidance
	IF answer = 188 (dm ³) AND use of ideal ga Award 4 marks for calculation	s equation	ALLOW use of <i>M</i> (answer to (c) OR 119.32 <i>Examples</i> From <i>n</i> (CH ₄ •5.74 H ₂ O)
	$n(CH_4) \text{ in 1 kg}$ $n(CH_4) = \frac{1 \times 10^3}{16.0} \times \frac{13.4}{100} = 8.375 \text{ OR}$	8.38 (mol) ✓	$\frac{1 \times 10^3}{119.32} = 8.38(1) \rightarrow 188 \text{ (dm}^3)$
	Rearranging ideal gas equation $V = \frac{nRT}{n} \checkmark$		From $n(CH_4 \cdot 5.7 H_2O)$ $\frac{1 \times 10^3}{118.6} = 8.43(2) \rightarrow 189 \text{ (dm}^3)$
	Substitution of values into $V = \frac{nRT}{p}$:		From $n(CH_4 \cdot 6 H_2O)$ 1 × 10 ³
	 Calculated value of n(CH₄) (Use ECF) R = 8.314 OR 8.31 		$\frac{1 \times 10^3}{124.0} = 8.06 \text{ (mol)} \rightarrow 181 \text{ (dm}^3\text{)}$
	 T in K: 273 K p in Pa OR kPa 101 OR 101 × 10³ C 	DR 1.01 × 10^5	IF $V = \frac{nRT}{p}$ is omitted, ALLOW when values are
	<i>e.g.</i> $\frac{8.375 \times 8.314 \times 273}{(101 \times 10^3)}$ OR $\frac{8.375 \times 8.333}{10}$	$\frac{314 \times 273}{1} \checkmark$	substituted into rearranged ideal gas equation.
	Final volume in dm^3 to 3 SF V = 188 (dm ³) \checkmark		
	COMMON ERRORS Use of 298 K ALLOW	ECF 3 marks n	
	<i>Example</i> $n(CH_4 \cdot 5.74 H_2O) = 8.375$		
	Use of 24.0 dm ³ OR 22.4 dm ³ ALLOW 24.0 dm ³ $n(CH_4 \cdot 5.74 H_2O) = 8.375 \cdot 22.4 dm^3 n(CH_4 \cdot 5.74 H_2O) = 8.375 \cdot 13.4\%$ (13.4/100) omitted	ECF from $n(CH_4)$ 2 marks n \checkmark $V = 8.375 \times 24.0 = 20$	nax for <i>n</i> (CH₄) and <i>V</i> in dm³ 1 (dm³) ✓
	$n = \frac{1 \times 10^3}{16} = 62.5 \text{ (mol)} \times 10^3 \text{ (mol)}$	$V = \frac{62.5 \times 8.314}{101 \times 1}$	$\frac{4 \times 273}{0^3} \rightarrow 1400 \text{ (dm}^3) \checkmark \checkmark \checkmark$
(e)	For fuel OR energy ✓	1	ALLOW responses linked with energy. e.g.to generate electricity

H432/03

Questi	ion	Answer	Marks	Guidance
				 for burning/heat
				ALLOW (chemical) feedstock
				IGNORE cooking
		Total	11	

Question	Answer	Marks	Guidance	
2 (a)	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.Level 3 (5–6 marks)A comprehensive conclusion, using all quantitative data, to calculate the energy change and ΔH values for reactions 3.1 and 3.2AND linking ΔH data using Hess' LawThere is a well-developed line of reasoning which is clear and logically structured. The working throughout is clearly shown. All values calculated with reasonable numbers of SF and correct signs mostly shown, allowing for ECF.Level 2 (3–4 marks)Attempts to describe all three scientific points but explanations may be incomplete.OR Explains two scientific points thoroughly with few omissions.There is a line of reasoning with some logical structure. There may be minor errors in energy change and errors in the calculations of ΔH for reaction 3.1 or reaction 3.2.Level 1 (1–2 marks) Processes raw mass and temperature data and obtains a calculated value for the energy change using $mc\Delta T$ OR attempts to obtain values for two scientific points but explanations may be incompleteThere is an attempt at a logical structure with a line of reasoning to obtain a value for energy change. There may be minor errors in calculation of energy change.O marks – No response or no response worthy of credit.	6	Indicative scientific points may include: 1. Masses and ΔT from raw results • $m(Na_2O) = 1.24$ (g) • $m(solution) = 25.75$ (g) • $\Delta T = 35.0$ (°C) Energy change from $mc\Delta T$ • energy released in J OR kJ = 25.75 × 4.18 × 35.0 = 3767 (J) OR 3.767 (kJ) (3.767225 unrounded) 	

Question	Answer	Marks	Guidance
(b)	% uncertainties to at least 1 SF, rounded or truncated ONE correct % uncertainty \checkmark BOTH correct % uncertainties \checkmark mass: $\frac{0.005 \times 2}{1.24} \times 100 = 0.8/0.81$ OR 0.80 (truncated) $\Delta T: \frac{0.1 \times 2}{35.0} \times 100 = 0.6 / 0.57$ (%) \checkmark Calculator values: mass: 0.8064516129 $\Delta T: 0.5714285714$	2	ALLOW error for uncertainty ALLOW ECF from mass and ΔT in 2(a) IGNORE % uncertainty of mass of solution ALLOW one mark for: • 2 calculations with both ×2 factors missing i.e. mass 0.3% AND ΔT 0.4% • Not converting to %s using ×2 factors i.e. 0.008 AND 0.006
(c)	ALLOW uncertainty OR error throughoutGreater mass of Na2O OR more Na2O \checkmark For mass, ALLOW amount/moles/quantitylarger ΔT OR reduces % uncertainty in $\Delta T \checkmark$	2	 ALLOW up to 2 marks based on a single mass measurement: one mass measurement OR measure mass directly ✓ e.g. tare balance % uncertainty reduced by half ✓ IGNORE repeat and take average read to more figures (same apparatus) increase volume (reduces mass error but increases △T error) use a cooling curve use a lid

Qu	Question		Answer		Guidance
((d)	(i)	sodium nitrate(III)	1	ALLOW sodium nitrite OR sodium nitrite(III)
((d)	(ii)	Sodium/Na oxidised from 0 to +1 ✓	2	ALLOW 1+ for +1 and 3+ for +3
			Nitrogen/N reduced from +3 to 0 \checkmark		ALLOW N ₂ for nitrogen
					ALLOW 1 mark for elements AND all oxidation numbers correct, but N on oxidised line and Na on reduced line
					+' is required in +3 and +1 oxidation numbers
	(d)	(iii)	$2NaNO_2 + 6Na \rightarrow 4Na_2O + N_2 \checkmark$ IGNORE state symbols	1	ALLOW multiples, e.g. NaNO ₂ + 3Na \rightarrow 2Na ₂ O + $\frac{1}{2}N_2$
			Total	14	

Question	Answer	Marks	Guidance
3 (a) (i)	(<i>rate</i> =) $k [H_2O_2] [I^-] \checkmark$ $k = \frac{rate}{[H_2O_2] [I^-]} = \frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100} = 0.02(00) \checkmark$ units: dm ³ mol ⁻¹ s ⁻¹ \checkmark	3	Square brackets required IGNORE any state symbolsIGNORE $[H^+]^0$ ALLOW ECF from incorrect rate equation BUT units must fit with rate equation usedALLOW mol ⁻¹ dm ³ s ⁻¹ OR in any orderNOTE K_c expression with calculation and units 0 marks
(a) (ii)	 Plot graph using ln <i>k</i> AND 1/T ✓ (Measure) gradient ✓ Independent mark E_a = (-)R × gradient OR (-)8.314 × gradient ✓ Independent mark, even if variables for graph are incorrect Subsumes 'gradient' mark 	3	Unless otherwise stated, assume, that In k is on y axis and 1/T is on x axisIGNORE interceptALLOW gradient = $(-)\frac{E_a}{R}$

Question	Answer	Marks	Guidance
(b)	ALLOW equilibrium sign in equations provided reactants on left	4	ALLOW correct multiples IGNORE state symbols
	Reaction of H ₂ O ₂ with MnO ₂ : H ₂ O ₂ + MnO ₂ + 2H ⁺ \rightarrow O ₂ + Mn ²⁺ + 2H ₂ O \checkmark		ALLOW uncancelled H ₂ O and H ⁺ H ₂ O ₂ + MnO ₂ + 4H ⁺ \rightarrow O ₂ + Mn ²⁺ + 2H ₂ O + 2H ⁺
	Reaction of H ₂ O ₂ with Mn ²⁺ : H ₂ O ₂ + Mn ²⁺ \rightarrow MnO ₂ + 2H ⁺ \checkmark		$H_2O_2 + Mn^{2+} + 2H_2O + 2H^+ \rightarrow MnO_2 + 4H^+ + 2H_2O$
	Use of <i>E</i> data Use of <i>E</i> data to support equation(s) above or half direction of provided half equations (one including MnO ₂) ✓ Also look for evidence around half equations		 Examples More negative <i>E</i> moves to left ORA Reduction half equation to the right ORA Most positive <i>E</i> is reduced ORA Calculated <i>E</i> cell = +0.81 V (from top 2) OR +0.27 V (from bottom 2)
	MnO₂ regenerated/reformed ✓ Must be linked to an equation showing MnO₂ as reactant and an equation showing MnO₂ as product		ALLOW combining of equations above to show that MnO_2 is used and reformed
(c) (i)	H ₃ C → C O → OH ✓ ALLOW skeletal OR displayed formula OR mixture of the above as long as non-ambiguous, e.g.	1	ALLOW $H_3C \longrightarrow O$ $O \longrightarrow OR$ $H_3C \longrightarrow O$ $O \oplus OR$ $H_3C \longrightarrow O$ $O \oplus OH$ $H_3C \longrightarrow OH$ $H_3C \longrightarrow OH$ $H_3C \longrightarrow OH$ $H_3C \longrightarrow OH$ $O \oplus OH$ $H_3C \longrightarrow OH$ $H_3C \longrightarrow OH$ OH OH OH $H_3C \longrightarrow OH$ OH

Question	Answer	Marks	Guidance
(c) (ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.023(125) (mol) award 3 marks for calculation K_c expression $(K_c =) \frac{[CH_3COOOH]}{[H_2O_2] [CH_3COOH]} \checkmark$ [CH ₃ COOOH] = 0.37 × 0.500 × 0.500 = 0.0925 (mol dm ⁻³) ✓ Subsumes K_c expression $n(CH_3COOOH)$ = 0.0925 × $\frac{250}{1000}$ = 0.023(125) (mol) ✓	3	If there is an alternative answer, check for any ECF creditALLOW 0.37 = $\frac{[CH_3COOOH]}{0.500 \times 0.500}$ ALLOW ECF but ONLY if 0.37 AND 0.5×0.5 have been usedCommon errors 0.076 2 marks Use of $[CH_3COOOH]^2$ 0.675 2 marks Use of 0.5 for $[H_2O]$ on K_c 0.169 2 marks Inverted K_c 0.338 1 mark Inverted K_c AND 0.5 for $[H_2O]$ 5.78 × 10^{-3} 2 marks $\times \frac{250}{1000}$ before $[CH_3COOOH]$
	Total	14	

	Question		Answer					Marks	Guidance
4	(a) (i)	(i)	Burette readings					4	
			Final (reading)/cm ³	23.15	45.95	32.45			Table not required
			Initial (reading)/cm ³	0.60	23.15	10.00	- ~		ALLOW initial reading before final reading
			 Correct titration results readings, clearly labeled AND all readings record last figure either 0 or 5 Titres 	t					
			 Titre/cm³ Correct subtractions to open statements 	22.55	22.80	22.45	✓		ALLOW ECF
			 Units Units of cm³ for initial, final and titres ✓ Mean titre mean titre = 22.55 + 22.45/2 = 22.50 OR 22.5 cm³ ✓ i.e. using concordant (consistent) titres 						ALLOW units with each value ALLOW brackets for units, i.e. (cm ³)
									ALLOW ECF from incorrect concordant titres

Question	Answer	Marks	Guidance		
(a) (ii)	ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840 $n(\text{NaOH}) = 0.0840 \times \frac{22.50}{1000} = 1.89 \times 10^{-3} \text{ (mol) } \checkmark$ $n(\text{A}) \text{ in } 250 \text{ cm}^3 = 10 \times 1.89 \times 10^{-3} = 1.89 \times 10^{-2} \text{ (mol) } \checkmark$ $M(\text{A}) = \frac{2.495}{1.89 \times 10^{-2}} = 132 \text{ (g mol}^{-1}) \checkmark$ $M(\text{alkyl group}) (= 132 - 75) = 57 \checkmark$ $\text{R} = \text{C}_4\text{H}_9 \checkmark$ ALLOW alkyl group in drawn structure with straight chain or branch(es) in wrong position, e.g. for $\text{R} = \text{C}_4\text{H}_9$, $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2$ OR (CH_3) ₃ C Structure with chiral carbon atoms identified (see * below) $HO \longrightarrow OH$ $HO \longrightarrow OH$	6	ALLOW ECF from incorrect mean titre in 4a(i)e.g. From 22.60 cm³ (mean of all 3 titres in (i), $n(NaOH) = 1.8984 \times 10^{-3}$ (mol)ALLOW ECF from incorrect $n(NaOH)$ ALLOW ECF from incorrect $n(A)$ ALLOW ECF from incorrect $M(A) - 75$ ALLOW ECF for alkyl group closest to calculated $M(alkyl group)$, e.g. for $M = 45$, ALLOW C ₃ H ₇ (43)ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguousIGNORE poor connectivity to OH groups Given in questionCommon error for 4 marks max 25.00 instead of 22.50 and scaling by $\times 10$ $2.10 \times 10^{-3} \times \rightarrow 2.10 \times 10^{-2} \checkmark$ $\rightarrow 118.81 \checkmark \rightarrow 43.81 \checkmark \rightarrow C_3H_7 \checkmark$ 25.00 instead of 22.50 and scaling by $\times \frac{250}{22.50}$ $2.10 \times 10^{-3} \times \rightarrow 2.33 \times 10^{-2} \checkmark$ $\rightarrow 106.93 \checkmark \rightarrow 31.93 \checkmark \rightarrow C_2H_5 \checkmark$ No structure with 2 chiral centres possible \times		

	3	
Equation $2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO)_2Mg + H_2$ Organic product \checkmark Balance \checkmark Type of reaction Redox \checkmark	5	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW 2HOCH(R)COOH + Mg \rightarrow 2HOCH(R)COO ⁻ + Mg ²⁺ + H ₂ ALLOW multiples IGNORE poor connectivity to OH groups <i>Given in question</i>
Equation 2HOCH(R)COOH R <	3	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguousALLOW 1 mark of the 2 equation marks for formation of '3 ring' with balanced equation: $H \rightarrow f \rightarrow $
	2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO) ₂ Mg + H ₂ Organic product \checkmark Balance \checkmark Type of reaction Redox \checkmark Equation 2HOCH(R)COOH \rightarrow \downarrow	2HOCH(R)COOH + Mg \rightarrow (HOCH(R)COO) ₂ Mg + H ₂ Organic product \checkmark Balance \checkmark Type of reaction Redox \checkmark 2HOCH(R)COOH \rightarrow \downarrow

Mark Scheme

G	Question		Answer		Guidance
	(c)	(i)		1	ALLOW brackets around structure with negative charge outside, i.e. Image: Comparison of the structure of the st
	(c)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 1.61×10^{-3} award 2 marks $M = 418(.0) \text{ (g mol}^{-1})$ OR $n(\text{Cr}) = 3.85 \times 10^{-6} \text{ (mol)} \checkmark$ Mass = $3.85 \times 10^{-6} \times 418.0 = 1.61 \times 10^{-3} \text{ g} \checkmark$	2	Note: $\frac{200 \times 10^{-6}}{52.0} = 3.85 \times 10^{-6}$ (at least 3 SF) ALLOW ECF from incorrect <i>M</i> OR <i>n</i> (Cr) ALLOW 3 SF up to calculator value correctly rounded
			Total	19	

	Questi	on	Answer	Marks	Guidance
			For 5a(i)–(iv) IGNORE poor connectivity to SH groups	Given in ques	tion
5	(a)	(i)	$K_{a} = \frac{[H^{+}] [C_{4}H_{9}S^{-}]}{[C_{4}H_{9}SH]} \checkmark$ Square brackets required	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous
	(a)	(ii)	$CH_{3}CH_{2}CH_{2}CH_{2}SH + H_{3}C - C + H_{2}O$ $H_{3}C - C + H_{2}O$ $S-CH_{2}CH_{2}CH_{2}CH_{3}$ Structure of thioester Complete equation V	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C4H9SH ALLOW CH3COOH Thioester functional group must be fully displayed, OR as a skeletal formula but allow SC4H9 in thioester
	(a)	(iii)	SH V	1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure
	(a)	(iv)	$\begin{array}{c} & HS \\ \hline \\ & HS \\ HS \\ \hline \\ & HS \\ \hline \\ \\ & HS \\ \hline \\ \\ & HS \\ \hline \\ \\ \\ & HS \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous

Question	Answer	Marks	Guidance			
(b)*	 Refer to the marking instructions on page 5 of the mark scheme for guidance on marking this question. Level 3 (5–6 marks) Develops a plan that identifies all compounds by a process of elimination AND includes essential detail for all required tests and observations There is a well-developed line of reasoning which is clear and logically structured 	6	Indicative scientific points may include: <u>Functional groups</u> • B alkene and tertiary alcohol • C alkene and aldehyde • D alkene and primary alcohol • E ketone • F secondary alcohol • G alkene and ketone <u>Tests</u>			
	Level 2 (3–4 marks) Develops a plan that identifies at least half of the compounds OR identifies the functional groups in most of the compounds AND includes detail of the required tests and observations There is a line of reasoning with some structure. The information is mostly relevant and supported by some		 B, C, D and G → Bromine decolourises C, D and F → (H⁺/)Cr₂O₇²⁻ green C, E and G → 2,4-DNP orange precipitate C → Tollens silver mirror For Tollens' ALLOW alternative: Fehling's solution produces a 'brown/brick red/orange precipitate For 2,4-DNP, ALLOW 2,4-DNPH and Brady's 			
	evidence. Level 1 (1–2 marks) Develops a plan that attempts to identify the compounds OR functional groups AND includes detail of the required tests and observations		B C D E F G			
			Bromine \checkmark \checkmark \checkmark \checkmark			
			$(\mathbf{H}^+/)\mathbf{Cr_2O_7}^{2-} \qquad \checkmark \qquad \checkmark \qquad \checkmark$			
			2,4-DNP Ý Ý Ý			
	There is a line of reasoning using information that is mostly relevant. 0 marks – No response or no response worthy of credit with no compounds identified Total	12	Tollens'✓No credit for tests on products of tests, melti points, spectra, etc. For other tests seen, contact TL for advice			

Appendix for Q5b Level of Response

Results of tests

	В	С	D	Е	F	G
Bromine	✓	✓	✓			\checkmark
$(H^{+})Cr_{2}O_{7}^{2-}$		✓	✓		✓	
2,4-DNP		✓		✓		✓
Tollens		✓				

Possible processes of elimination (not inclusive)

BCDEFG with 2,4 DNP	CEG orange ppt CEG with Tollens EG with bromine	C silver mirror G decolourises	E no change
BDF with (H ⁺)/Cr ₂ O ₇ ²⁻	DF green DF with bromine	B no colour cha D decolourises	0
BCDEFG with (H ⁺)/Cr ₂ O ₇ ²⁻	CDF green CDF with Tollens/2,4DNP DF with bromine	C silver mirror/o D decolourises	
BEG with 2,4 DNP	EG orange ppt EG with bromine	B no change G decolourises	E no change
BCDEFG with bromine	BCDG decolourise EF with 2,4-DNP/(H^+)Cr ₂ O ₇ BCDG with Tollens' BDG with H^+ /Cr ₂ O ₇ ²⁻ BG with 2,4-DNP	EF no cha E orange C silver m D green G orange	ppt/ F green irror BDG no change BG no change

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

