

Question			Answer	Marks	Guidance	
			$\Rightarrow \quad h-1.548=0.0206(t-60)$ $\Rightarrow \quad h=0.0206 t+0.312$	M1 dep* A1 [5]	For equation of line, using their $b, b>0$, and passing through their (\bar{t}, \bar{h}) Final equation must have h as the subject. CAO Allow $h=0.021 t+0.31$, Allow $h=0.021 t+0.288$ NOTE If equation given in terms of y and x then A0 unless x \& y defined appropriately	
1	(iv)	(A)	$(0.0206 \times 70)+0.312=1.754$ Likely to be reliable as interpolation	B1 E1 [2]	Allow 1.75 FT their equation provided $b>0$	
1	(iv)	(B)	$(0.0206 \times 120)+0.312=2.784$ Could be unreliable as extrapolation	B1 E1 [2]	Allow 2.78 FT their equation provided $b>0$ Condone "reliable as 120 is not too far away from the data used to produce the equation"	
1	(v)		$\begin{aligned} & \text { Thickness }=40 \Rightarrow \text { predicted max height } \\ & \quad=(0.0206 \times 40)+0.312=1.136 \\ & \text { Residual }=1.09-1.136 \\ & =-0.046 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	For prediction. FT their equation provided $b>0$ For difference between 1.09 and prediction. Allow -0.05	
1	(vi)		Regression line gives a prediction of $(0.0206 \times 200)+0.312=4.432$ This is well above the observed value. It could be that the relationship breaks down for larger thickness, or that the relationship is not linear	B1* E1 dep* E1 [3]	B1 for obtaining a prediction from regression equation or from graph E1 for noting the large difference between prediction and actual value E1 for suitable interpretation regarding the relationship between maximum height and thickness	

Question			Answer$\begin{aligned} & \mathrm{P}(X=0)=\frac{\mathrm{e}^{-2.1} 2.1^{0}}{0!} \\ & =0.1225 \end{aligned}$	Marks M1 A1	Guidance	
2	(i)	(A)			For calculation CAO Allow 0.122	
			Or from tables $\mathrm{P}(X=0)=0.1225$			
				[2]		
2	(i)	(B)	$\begin{aligned} & \mathrm{P}(X \geq 2)=1-\mathrm{P}(X \leq 1)=1-0.3796 \\ & =0.6204 \end{aligned}$	M1 A1 [2]	M1 for use of correct structure. i.e. M0 for use of $1-\mathrm{P}(X \leq 2)$ or $1-0.6796$ Using $\lambda=2.0$ leading to $1-0.4060$ gets M1 CAO Allow 0.6203, 0.620	
2	(i)	(C)	New $\lambda=5 \times 2.1=10.5$ P (Between 5 and 10 in 5 mins) $=0.5207-0.0211$ $=0.4996$	B1 M1 A1 [3]	For mean (SOI) For $\mathrm{P}(X \leq 10)-\mathrm{P}(X \leq 4)$ used. CAO Allow 0.500, 0.50 . Condone 0.5 www.	e.g. $1-0.9379$ leads to B0M1A0
2	(ii)		Mean number in 60 minutes $=60 \times 2.1=126$ Using Normal approx. to the Poisson, $X \sim \mathrm{~N}(126,126)$ $\begin{aligned} & \mathrm{P}(X \geq 130)=\mathrm{P}\left(Z \geq \frac{129.5-126}{\sqrt{126}}\right) \\ & =\mathrm{P}(Z>0.3118)=1-\Phi(0.3118) \\ & =1-0.6224 \\ & =0.3776 \end{aligned}$	B1 B1 B1 M1 A1 [5]	For Normal approx. For correct parameters (SOI) For correct continuity correction For correct probability structure CAO, (Do not FT wrong or omitted CC). Allow 0.378www \& 0.3775	

| Question | | Answer | Marks | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Question		Answer	Marks	Guidance	
3	(iii)	$\begin{aligned} & \mathrm{P}(Y<350)=0.2, \mathrm{P}(Y>390)=0.1 \\ & \mathrm{P}\left(Z<\frac{350-\mu}{\sigma}\right)=0.2 \\ & \Phi^{-1}(0.2)=-0.8416 \\ & \frac{350-\mu}{\sigma}=-0.8416 \\ & \mathrm{P}\left(Z>\frac{390-\mu}{\sigma}\right)=0.1 \\ & \Phi^{-1}(0.9)=1.282 \\ & \frac{390-\mu}{\sigma}=1.282 \\ & 350=\mu-0.8416 \sigma \\ & 390=\mu+1.282 \sigma \\ & 2.1236 \sigma=40 \\ & \sigma=18.84 \\ & \mu=350+(0.8416 \times 18.84)=365.85 \end{aligned}$	M1 B1 M1 A1 A1 [5]	For equation as seen or equivalent with their -ive z value For 1.282 or -0.8416 For equation as seen or equivalent with their + ive z value Allow 18.8 Allow 365.86, 366, 365.9	If 'continuity corrections’ applied allow M marks but do not award final A marks Answers to max 2 d.p.
3	(iv)	$\begin{aligned} & \Phi^{-1}(0.975)=1.96 \\ & a=365.85-(1.96 \times 18.84) \\ & =328.9 \\ & \\ & b=365.85+(1.96 \times 18.84) \\ & =402.8 \end{aligned}$	B1 M1 A1 A1 [4]	For using a suitable pair of z values e.g. ± 1.96 For either equation provided that a suitable pair of z values is used. e.g. +2.326 and -1.751 FT their μ and σ to 2 d.p. (A0 if 'continuity correction' used) FT their μ and σ to 2 d.p. (A0 if 'continuity correction' used)	Accept any correct values of a and b.

ADDITIONAL NOTES REGARDING QUESTION 4 (b)
Critical Value Method
$420-2.576 \times 3.5 \div \sqrt{ } 10$ gets M1*B1*
$=417.148 \ldots$ gets A1
417.79 > 417.148.. gets M1dep* for sensible comparison

A1 still available for correct conclusion in words \& context
Confidence Interval Method
CI centred on $417.79+$ or $-2.5756 \times 3.5 \div \sqrt{ } 10$ gets M1* B1*
= (414.93..., 420.64..) gets A1
NOTE that the final M1dep* A1 available only if 2.576 used.
"Contains 420" gets M1dep*
A1 still available for correct conclusion in words \& context
Probability Method
Finding P(sample mean < 417.79) = 0.0229 gets M1* A1 B1*
0.0229 > 0.005* gets M1dep* for a sensible comparison if a conclusion is made.

A1 available for a correct conclusion in words \& context.
Condone P(sample mean $>417.79)=0.9771$ for M1* but only allow A1 B1* if sensible comparison made, at which point the final M1dep* and A1 are still available

ADDITIONAL NOTE REGARDING OVER-SPECIFICATION OF ANSWERS

Over-specification by providing final answers correct to 5 or more significant figures will be penalised. When this applies, candidates may lose no more than 2 marks per question and no more than 4 marks in total. The only exception to this rule is in Question 3 parts (iii) \& (iv) - see guidance notes.

