Paper 3 Mark scheme

Question number	Acceptable answers	Additional guidance	Mark
1(a)	 An explanation that makes reference to the following points: Comment on the data (1) Correct consequent conclusion (1) 	 4.43 is an anomalous value So the mean value is too low Accept data is concordant so mean value is correct 	2
1(b)	 An explanation that makes reference to the following points: Light gates can record short times accurately (1) OR with smaller uncertainty (1) Because human reaction time is not involved (1) 		2

(Total for Question 1 = 4 marks)

Question number	Acceptable answers	Additional guidance	Mark
2	 Sensible estimate of uncertainties from readings given (1) Adds percentage uncertainties (1) Hence calculates uncertainty in speed (1) Candidate's conclusion must be supported by their estimate of the uncertainties (1) 	Example of calculation: %U in L is (0.1/25.6) x 100 % = 0.4 % %U in F is (1/320) x 100 % = 0.3 %	
	of the uncertainties (1)	%U in speed is 0.7 % 328 x 0.007 = 2 Speed = 328 ± 2	
		All three results are within the calculated uncertainty so concludes student B is correct	4

(Total for Question 2 = 4 marks)

134

Question number	Acceptable answers	Additional guidance	Mark
3 (a)(i)	A description that makes reference to the following points: Circuit diagram showing:		
	• Cell, variable resistor and ammeter in series and voltmeter in parallel with cell (1)		
	• Recording pairs of readings of terminal p.d. and current (1)		
	 Use the variable resistor to obtain 5 other pairs of readings (1) 	Should be between 5 and 10 other pairs	3
3 (a)(ii)	 A description that makes reference to the following points: Plot a graph of terminal potential difference on the y-axis and current on the x-axis (1) Intercept on the y-axis equals e.m.f. (1) And gradient = -r (1) 		
3(b)	 From graph: after 500 charging cycles internal resistance of cell 	Example of calculation:	3
	is 327 mΩ (1)	$V_0 = 3.6 \mathrm{V} - 0.800 \mathrm{A} \times 0.310 \Omega$	
	• Use of $V = \varepsilon - Ir$ (1)	= 3.6 V - 0.248 V = 3.352 V	
	• Use of $\frac{V_{500}}{V_{0}} \times 100\%$	$V_{500} = 3.6 \mathrm{V} - 0.800 \mathrm{A} \times 0.327 \Omega$	
		= 3.6 V - 0.262 V = 3.338 V	
	$\frac{V_{500}}{V_0} \times 100\% = 99.6\%$ (1)	$\frac{V_{500}}{V_0} \times 100\% = \frac{3.338 \mathrm{V}}{3.352 \mathrm{V}} \times 100\% = 99.6\%$	
	• So manufacturer's claim is correct (1)	This last mark is awarded only if the conclusion is	
		correctly supported by the calculation.	4

(Total for Question 3 = 10 marks)

Question number	Acceptable answers	Additional guidance	Mark
4 (a)	 Any three from: Inconsistent precision for extension (1) Lack of precision on mass, should be shown to 3 DP (1) No evidence of repeat readings (1) OR there should be more readings to compensate for repeat readings being inappropriate (1) Inconsistent intervals between readings (1) 	Uncertainty suggested by 1 sf is far greater than that expected in practice	3
4 (b)	 A description that makes reference to two of the following points: use of ficidual mark (1) eye close to liquorice lace to avoid parallax errors (1) Fixed metre rule close to lace (1) Use of set square to ensure rule vertical (1) 		2

(Total for Question 4 = 5 marks)

number Acceptable answers	Additional guidance	Mark
 Diameter is only half a division on the scale (1) OR diameter is measured to only 1 sf (1) Hence there is a large percentage uncertainty in measurement of diameter of oil drop (1) Since the volume of the drop is calculated by taking (diameter)³, the percentage uncertainty in volume becomes very large (3 × % uncertainty in diameter) (1) Suggestion for improvement: use a larger oil drop, use a (vernier) scale capable of reading to nearest 0.1 mm, project image of droplet to larger size (1) Drop will not spread out as an exactly circular area, so diameter reading may be inaccurate (1) Suggestion for improvement: the diameter of spread-out oil drop should be taken a number of times across a number of different directions and a mean calculated (1) 	Allow for identification of any other valid problems and improvements based on good physics, for example place metre rule across tray so that it is close to the surface.	6

137

 The curring (1 The dia (1) The field (1) The field (1) The electron (1) The electron (1) Use of (1) Hence (1) 	Acceptable answers	Additional guidance	Mark
 v = 2.4 6 (b)(ii) Use of Recog Hence 	e direction of the ring field opposes the change producing it		
Recog Hence	e of $\frac{1}{2} mv^2 = mgh$ (1) = 2.43 m s ⁻¹ (1)	Example of calculation: $v = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 0.30} = 2.43 \text{ m s}^{-1}$	2
• Equate	e of impulse = change in momentum (1) cognises initial velocity is zero (1) nce $F = 0.923$ N (1) e of $l = \pi d$ (1) uates calculated value of F with BII (1) nce I = 191 A (1)	Example of calculation: Ft = mv - mu where $u = 0So F = (0.019 \text{ kg} \times 2.43 \text{ m s}^{-1})/0.05 \text{ s} = 0.923 \text{ N}l = \pi \times 0.048 \text{ m} = 0.151 \text{ m}I = 0.923 \text{ N}/(0.032 \text{ T} \times 0.151 \text{ m}) = 191 \text{ A}$	

(Total for Question 6 = 12 marks)

Question number	Acceptable answers	Additional guidance	Mark
7 (a)(i)	 A description that makes reference to the following points: Record <i>nT</i> (where <i>n</i> is at least 5) (1) Divide measurement by <i>n</i> (1) 		2
7 (a)(ii)	 Anomalies can be spotted (1) Reduce the effect of random error (1) 		2
7 (b)(i)	• BFL is smooth and thin with a definite minimum and minimum is in range 0.26 m – 0.28 m (1)		1
7 (b)(ii)	 Values read correctly from candidate's line (1) <i>h</i> to 3 sig fig and <i>T</i> to 4 sf (1) 	Values from their curve to within 1 small square with no unit penalty.	2
7 (c)	 A description that makes reference to the following points: Plot T² h against h² (1) C is intercept on T² h axis (1) OR C is the value of T² h when h² is zero (1) 		
	• Unit is m s ² (1)		3

(Total for Question 7 = 10 marks)

Question number	Acceptable answers	Additional guidance	Mar
8 (a)	 An explanation that the student's conclusion is incorrect because: The popper returns to its original shape, even though there is a time delay (1) 		
	 Elastic material returns to its original shape when the deforming force is removed (1) 		
	• But a plastic material would suffer a permanent deformation (1)		3
8 (b)	A description that makes reference to the following points: • Refer to $v^2 = u^2 + 2as$ (1)	Allow argument $\frac{1}{2}mv^2 = mgh$ to get the same results.	
	• Where s is height reached, v is zero, $a = -g(1)$		
	• So $u = \sqrt{2gs}$ (1)		3
8 (b)(ii)	• Air resistance will act on the popper (1)		
	•As a decelerating force (1) OR dissipating energy (1)		
	• So the initial speed will be lower than in the absence of air resistance, so the suggestion is not correct (1)		
			3

(Total for Question 8 = 9 marks)

Question number		Acceptable answers	S	Additional guidance	Mark
9 (a)	 Uses weight of displaced air = ρVg (1) Finds resultant force = upthrust – weight (1) Uses F = ma to find acceleration (1) Acceleration = 0.161 m s⁻² (1) 		t (1)	Example of calculation: Weight of air displaced = $\rho Vg = 1.20 \text{ kg m}^{-3} \times 2880$ m ³ × 9.81m s ⁻² = 33 903N Resultant upward force = 33 903 N – (3400 kg × 9.81m s ⁻²) = 549 N Acceleration = 549 N/3400 kg = 0.161 m s ⁻²	4
9 (b)*	and logically str sustained reason Marks are award answer is structu	led for indicative content and and shows lines of reasonable shows how the marks shows how	es and fully- ad for how the oning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning).	
	$ \begin{array}{r} $	4 3 2 1 0		indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	6

Question number	Acceptable a	nswers	Additional guidance	Mark
	The following table shows how the n be awarded for structure and lines of Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of reasoning	narks should	Additional guidance	Mark
	Answer has no linkages between points and is unstructured	0		

Question number	Acceptable answers	Additional guidance	Mark
9 (b)* (continued)	Indicative content		
()	 As parachute opens (at B) the upwards force increases Along BC the velocity is decreasing at a non-constant rate The drag is greater than weight (negative gradient) The drag is decreasing (curved line) Eventually the drag force balances the weight No acceleration so line is horizontal 		

(Total for Question 9 = 10 marks)

Question number	Acceptable answers	Additional guidance	Mark
10 (a)	 A description that makes reference to the following points: g is directly proportional to r up to R₀ (1) 		
	• and then g decreases with increasing r (1)		
	• where g is proportional to the inverse of the square of r (1)		3
10 (b)	 Force on object = mg (local g) (1) Force is proportional to displacement (1) Force acts in the opposite direction to the displacement (1) Therefore we can say F = -kx, so the condition for SHM is met and the prediction is correct (1) 		4
10 (c)(i)	Either • When $x = R_0$, $F = GMm/R_0^2$ (1) • $F = GMmR_0/R_0^3$ so $k = m\omega^2 = GMm/R_0^3$ (1) • Use of $T=2\pi/\omega$ (1) • $T^2 = 4\pi^2/\omega^2 = 4\pi^2 R_0^3/GM$ So $T = 2\pi\sqrt{(R_o^3/GM)}$ (1)		
	OR • From graph F=-(g/R_0)r (1) • From which $\omega = \sqrt{(g/R_0)}$ (1) • Use of $T=2\pi/\omega$ (1)		4
	• So $T = 2\pi \sqrt{(R_o / g)}$ (1)		4

Question number	Acceptable answers	Additional guidance	Mark
10 (c)(ii)	Either		
	Centripetal force = $mv^2/R_0 = GMm/R_0^2$ (1)		
	• $4\pi^2 R_0^2 / T^2 R_0 = GM/R_0^2$ (1)		
	• $T^2 = 4\pi^2 / \omega^2 = 4\pi^2 R_0^3 / GM$		
	So $T = 2\pi \sqrt{(R_o^3 / GM)}$ (1)		
	OR		
	• $mg = mv^2/R_0 = m \omega^2 R_0$ (1)		
	• So $\omega = \sqrt{(g/R_0)}$ (1)		
	• $T = 2\pi/\omega = 2\pi\sqrt{(R_0/g)}$ (1)		3

(Total for Question 10 = 14 marks)

Question number	Acceptable answers				'S	Additional guidance	Mark	
11 (a)	An explanation that makes reference to the following points:							
	• Resistance increases with decreasing intensity (1)							
		• As distance increases light intensity decreases so resistance increases (1)						
11 (1)	An explanation that makes reference to the following points:							2
11 (b)	-							
	 Shows expansion ln R = p ln(d) + ln(k) (1) Compares with y = mx+ c and states that the gradient is p which 							
	is constant (1)						2	
11 (c)(i)	• Ln values correct and to 3 or 4 SF (1)					See marking guidance for graph plotting		
		<i>d</i> /m	<i>R</i> /kΩ	ln (<i>d</i> /m)	ln (<i>R</i> /kΩ)			
		1.00	1.79	0.000	0.582			
		1.20	2.24	0.182	0.806			
		1.60	3.32	0.470	1.200			
		2.00	4.04	0.693	1.396			
		2.20	4.70	0.788	1.548			
		2.60	5.50	0.956	1.705			
	 Labels and unit (1) Scales (1) Plots (1) Line of best fit (1) 							
	• Line	of best fit (1)					5

Question number	Acceptable answers	Additional guidance	Mark
11 (c)(i) (continued)	$\begin{array}{c} 1.80 \\ 1.60 \\ 1.40 \\ 1.40 \\ 1.20 \\ 1.00 \\ 0.80 \\ 0.80 \\ 0.80 \\ 0.60 \\ 0.40 \\ 0.000 \ 0.200 \ 0.400 \ 0.600 \ 0.800 \ 1.000 \\ \ln (d/mm) \end{array}$		
11 (c) (ii)	 Finds gradient with large triangle – at least half the plotted length (1) 1.13 Obtains k = 1.8 (1) States relationship between R and d (1) 		4

(Total for Question 11 = 13 marks)

|47

Question		Additional guidance	Mark
number	Acceptable answers	Additional guidance	
12 (a)(i)	• use of $F = Q_1 Q_2 / 4\pi \varepsilon_0 r^2$ (1)		
	• use of $F = Gm_1m_2/r^2$ (1)		
	• Expresses forces as a ratio (1) OR calculates the individual		
	forces $F_e = 8.1 \times 10^{-8} \text{ N F}_g = 3.6 \times 10^{-47} \text{ N}$ (1)		
	• Ratio = 2×10^{39} or 5×10^{-40} and identifies gravitational force as		
	insignificant (1)		4
12 (a)(ii)	• use of $F = mv^2/r$ and $F = Q_1Q_2/4\pi\varepsilon_0 r^2$ (1)	Example of calculation:	
	• to derive $v = \sqrt{\frac{Q_1 Q_2}{4\pi \epsilon_0 rm}}$ (1)		
		$v = \sqrt{\frac{Q_1 Q_2}{4\pi\epsilon_0 rm}}$	
	• velocity = $2.2 \times 10^6 \text{ m s}^{-1}$ (1)	$\frac{1.6 \times 10^{-19} \mathrm{C} \times 1.6 \times 10^{-19} \mathrm{C}}{1.6 \times 10^{-19} \mathrm{C}}$	
		$v = \sqrt{\frac{1.6 \times 10^{-19} \text{ C} \times 1.6 \times 10^{-19} \text{ C}}{4\pi \times 8.85^{-12} \text{ Fm}^{-1} \times 5.3 \times 10^{-11} \text{m} \times 9.1 \times 10^{-31} \text{ kg}}}$	
		$v = 2.185 \times 10^6 \text{ m s}^{-1}$	3
12 (b)	• Calculates wavelength λ (circumference) (1)	Example of calculation:	
	• Use of $p = h/\lambda$ (1)	$\lambda = 2\pi r = 2\pi \times 5.3 \times 10^{-11} \text{m} = 3.33 \times 10^{-10} \text{m}$	
	• $v = 2.2 \times 10^6 \text{ m s}^{-1}$ (1)	$\lambda = h/mv$ so $v = h/m$.	
		$v = 6.63 \times 10^{-34} \text{ J s}/(9.1 \times 10^{-31} \text{ kg} \times 3.33 \times 10^{-10} \text{ m})$	2
		$v = 2.188 \times 10^6 \text{ m s}^{-1}$	3

(Total for Question 12 = 10 marks)

Question number		Acceptable	answers	Additional guidance	Mark
13 (a)	 An explanation that makes reference to the following points: Resonance is occurring (1) when the driving frequency/forced vibration (at walking frequency) matches the natural frequency (1) energy transfer is maximum (1) Supporting the observation that the amplitude rapidly increases (1) 				4
13 (b)(i)*	and logically stru sustained reasoni Marks are award answer is structu	actured answer with ing. ed for indicative co red and shows lines ble shows how the	pility to show a coherent a linkages and fully- ontent and for how the s of reasoning. marks should be awarded	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	6
	1 0	1 0			6

Question number	Acceptable answers		Additional guidance	Marl
13 (b)(i)* (continued)	The following table shows how the n be awarded for structure and lines of Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout Answer is partially structured with some linkages and lines of			
	reasoning Answer has no linkages between points and is unstructured	0		

Question number	Acceptable answers	Additional guidance	Mark
13 (b)(i)* (continued)	Indicative content		
	 Determine the natural frequency by displacing the tea in the cup and measuring the time for oscillations Time (5 to 10 or 'suitable number' if test run mentioned) full oscillations and divide by the number Carry the tea for a known volume of tea for fixed number of 		
	 Determine the frequency of the gait Measure the quantity of tea remaining Repeat for other walking paces 		
13 (b)(ii)	 A description that makes reference to the following points: Plot volume of remaining tea against walking frequency (1) Determine whether there is a relationship between step frequency and spillage (1) If there is, determine whether maximum spillage occurs at or 		
	near the natural frequency (1)	(Total for Question 13 =	3 = 13 marl

151