

# F

# Friday 14 June 2019 – Morning GCSE (9–1) Physics A (Gateway Science)

J249/02 Paper 2 (Foundation Tier)

Time allowed: 1 hour 45 minutes

#### You must have:

- a ruler (cm/mm)
- the Data Sheet (for GCSE Physics A (inserted))

#### You may use:

- · a scientific or graphical calculator
- an HB pencil



| Please write clearly in black ink. <b>Do not write in the barcodes.</b> |  |  |  |  |  |                  |  |  |  |  |
|-------------------------------------------------------------------------|--|--|--|--|--|------------------|--|--|--|--|
| Centre number                                                           |  |  |  |  |  | Candidate number |  |  |  |  |
| First name(s)                                                           |  |  |  |  |  |                  |  |  |  |  |
| Last name                                                               |  |  |  |  |  |                  |  |  |  |  |

#### **INSTRUCTIONS**

- The data sheet will be found inside this document.
- Use black ink. You may use an HB pencil for graphs and diagrams.
- Answer all the questions.
- Where appropriate, your answers should be supported with working. Marks may be given for a correct method even if the answer is incorrect.
- Write your answer to each question in the space provided. If additional space is required, use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.

#### **INFORMATION**

- The total mark for this paper is 90.
- The marks for each question are shown in brackets [ ].
- Quality of extended responses will be assessed in questions marked with an asterisk (\*).
- · This document consists of 32 pages.



# **SECTION A**

You should spend a maximum of 30 minutes on this section.

Answer **all** the questions.

# Write your answer to each question in the box provided.

| 1 | Wh   | ich statement describes the domestic electricity supply in the UK? |     |
|---|------|--------------------------------------------------------------------|-----|
|   | Α    | 50 V a.c. at 230 Hz                                                |     |
|   | В    | 50 V d.c. at 230 Hz                                                |     |
|   | С    | 230 V a.c. at 50 Hz                                                |     |
|   | D    | 230 V d.c. at 50 Hz                                                |     |
|   | You  | ır answer                                                          | [1] |
| 2 | A te | eacher measures the speed of water waves in a ripple tank.         |     |
|   | Wh   | at apparatus should she use?                                       |     |
|   | Α    | Ammeter and stopwatch                                              |     |
|   | В    | Newton-meter and ruler                                             |     |
|   | С    | Ruler and protractor                                               |     |
|   | D    | Ruler and stopwatch                                                |     |
|   | You  | ır answer                                                          | [1] |
| 3 | Wh   | at type of wave is light?                                          |     |
|   | Α    | A longitudinal electromagnetic wave                                |     |
|   | В    | A longitudinal P wave                                              |     |
|   | С    | A transverse S wave                                                |     |
|   | D    | A transverse electromagnetic wave                                  |     |
|   | You  | ır answer                                                          | [1] |

| 4 | Wh    | ich statement is <b>true</b> for electromagnetic waves?                                  |     |
|---|-------|------------------------------------------------------------------------------------------|-----|
|   | Α     | High frequency electromagnetic waves have a long wavelength.                             |     |
|   | В     | High frequency electromagnetic waves have no wavelength.                                 |     |
|   | С     | Low frequency electromagnetic waves have a long wavelength.                              |     |
|   | D     | Low frequency electromagnetic waves have a short wavelength.                             |     |
|   | You   | ir answer                                                                                | [1] |
| 5 | A b   | oiler has an input energy of 720 kJ from the gas it burns.                               |     |
|   | It tr | ansfers 540 kJ of useful energy to the home.                                             |     |
|   | Wh    | at is the efficiency of the boiler?                                                      |     |
|   | Use   | e the equation: efficiency = useful output energy transfer ÷ total input energy transfer |     |
|   | Α     | 0.12                                                                                     |     |
|   | В     | 0.75                                                                                     |     |
|   | С     | 0.90                                                                                     |     |
|   | D     | 1.33                                                                                     |     |
|   | You   | er answer                                                                                | [1] |

6 Here are some graphs for the potential difference (p.d.) of four electrical supplies.

Which graph shows a direct voltage?









7 Which diagram shows reflection of a light ray using a plane mirror?







В



Your answer [1]

Which row in the table is correct?

|   | Electromagnetic wave | Use              |
|---|----------------------|------------------|
| Α | Radio                | Killing bacteria |
| В | Microwaves           | Mobile phones    |
| С | X-rays               | Optical fibres   |
| D | Gamma rays           | Tanning beds     |

|   | Υοι  | ur answer                                                                         | [1] |
|---|------|-----------------------------------------------------------------------------------|-----|
| 9 | A ru | unner has a mass of 80 kg and moves at a speed of 5 m/s.                          |     |
|   | Cal  | culate the kinetic energy of the runner.                                          |     |
|   | Use  | e the equation: kinetic energy = $0.5 \times \text{mass} \times (\text{speed})^2$ |     |
|   | Α    | 200 J                                                                             |     |
|   | В    | 1000 J                                                                            |     |
|   | С    | 2000 J                                                                            |     |
|   | D    | 40 000 J                                                                          |     |
|   | Υοι  | ur answer                                                                         | [1] |

Which row in the table correctly describes how the national grid transfers electrical energy efficiently?

|   | Voltage | Current | Reason                        |
|---|---------|---------|-------------------------------|
| Α | High    | High    | To increase heating in wires. |
| В | High    | Low     | To reduce heating in wires.   |
| С | Low     | High    | To reduce heating in wires.   |
| D | Low     | Low     | To reduce heating in wires.   |

| Your answer | [1] |
|-------------|-----|
|-------------|-----|

11 The acceleration of a car is  $2 \text{ m/s}^2$ . The mass of the car is 1000 kg.

Calculate the resultant force on the car.

- **A** 20 N
- **B** 200 N
- C 2000 N
- **D** 20000 N

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

12 Which radioactive decay equation is correct?

- $\mathbf{A} \quad {}^{14}_{\phantom{0}6}\mathrm{C} \, \rightarrow \, {}^{10}_{\phantom{0}4}\mathrm{Be} \, + \, {}^{\phantom{0}0}_{\phantom{0}-1}\mathrm{e}$
- $\textbf{B} \quad {}^{14}_{\phantom{0}6}\text{C} \, \rightarrow \, {}^{10}_{\phantom{0}4}\text{Be} \, + \, {}^{0}_{\phantom{0}0}\gamma$
- **C**  $^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + ^{4}_{2}\text{He}$
- ${\bf D} \quad {}^{14}_{\ 6}{\rm C} \, \rightarrow \, {}^{14}_{\ 7}{\rm N} \, + \, {}^{0}_{\ -1}{\rm e}$

| Your answer |  |  |  | [1] |
|-------------|--|--|--|-----|
|-------------|--|--|--|-----|

13 The table shows the current and potential difference (p.d.) for four different transformers.

Which row shows the correct data for a **step-up** transformer?

|   | Prima    | ry coil     | Secondary coil |             |  |
|---|----------|-------------|----------------|-------------|--|
|   | p.d. (V) | Current (A) | p.d. (V)       | Current (A) |  |
| Α | 6        | 4           | 12             | 2           |  |
| В | 12       | 2           | 3              | 8           |  |
| С | 12       | 2           | 12             | 2           |  |
| D | 12       | 2           | 24             | 1.5         |  |

| Your answer | [1 |
|-------------|----|
| Your answer | [1 |

**14** A sound wave travels in air and enters water.

What happens to the sound wave as it enters the water?

|   | Speed     | Frequency      | Wavelength |
|---|-----------|----------------|------------|
| Α | decreases | decreases      | decreases  |
| В | decreases | stays the same | decreases  |
| С | increases | increases      | increases  |
| D | increases | stays the same | increases  |

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

15 An electromagnetic wave transfers energy.

Which row in the table is correct?

|   | Electromagnetic wave | Energy transfer                                         |
|---|----------------------|---------------------------------------------------------|
| Α | Infra-red            | From a heating element of a toaster to the bread inside |
| В | Radio                | From a radio to a transmitter                           |
| С | Gamma rays           | From a high voltage supply to heating water in food     |
| D | X-rays               | From bones in the body to an X-ray machine              |

| Your answer |  | [1] |
|-------------|--|-----|
|-------------|--|-----|

9

# **BLANK PAGE**

PLEASE DO NOT WRITE ON THIS PAGE

#### 10

#### **SECTION B**

#### Answer all the questions.

**16** A student investigates how the thickness of insulation affects the cooling of a cup of tea.

Fig. 16.1 is a diagram of her apparatus.



Fig. 16.1

The student wraps a layer of insulation around a cup containing  $200\,\mathrm{cm}^3$  of hot tea.

She measures the temperature of the tea at the start of the experiment and after 10 minutes.

She repeats the experiment with different thicknesses of the insulation.

Table 16.1 shows her results.

| Thickness of the | Tem   | Temperature of tea (°C) |            |  |  |  |  |  |  |  |  |
|------------------|-------|-------------------------|------------|--|--|--|--|--|--|--|--|
| insulation (mm)  | Start | End                     | Difference |  |  |  |  |  |  |  |  |
| 2                | 90    | 65                      | 25         |  |  |  |  |  |  |  |  |
| 4                | 88    | 66                      | 22         |  |  |  |  |  |  |  |  |
| 6                | 91    | 72                      | 19         |  |  |  |  |  |  |  |  |
| 8                | 89    | 73                      | 16         |  |  |  |  |  |  |  |  |
| 10               | 98    | 84                      | 14         |  |  |  |  |  |  |  |  |
| 12               | 100   | 60                      |            |  |  |  |  |  |  |  |  |

**Table 16.1** 

(a) (i) Calculate the temperature **difference** when the thickness of insulation is 12 mm.

Temperature difference = .....°C [1]

| lot a graph o |     |          |      |    |                |        |    |     |    |                | d (    | dra | aw | а  | lir | ie  | of   | be | st | fit | t.             |        |                |   |   |        |   |  |
|---------------|-----|----------|------|----|----------------|--------|----|-----|----|----------------|--------|-----|----|----|-----|-----|------|----|----|-----|----------------|--------|----------------|---|---|--------|---|--|
| nore the an   | oma | lou      | s re | su | ilt 1          | for    | 12 | 2 n | nn | n.             |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               | 30- | <b>#</b> |      | Н  | $\blacksquare$ | $\Box$ | Н  | H   | H  | $\Box$         | $\Box$ | _   | -  |    | П   | H   | H    | H  | П  | H   | H              | $\Box$ | $\Box$         | _ | П | $\Box$ |   |  |
|               |     |          |      |    | H              |        |    |     | H  |                |        |     |    |    |     | H   |      |    | H  | Ħ   | H              |        | $\mp$          |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    | H  | H   |                |        |                |   |   |        |   |  |
|               | 25- |          |      |    |                |        |    |     |    | $\blacksquare$ |        |     |    |    |     |     |      |    |    | H   | H              |        | +              | Ŧ |   |        |   |  |
|               |     |          |      |    |                |        | H  |     | H  |                |        |     |    |    |     | H   |      |    | H  | H   | H              |        |                |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               | 20- |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               | 20  |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    | H  |     |                |        |                |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
| Temperature   |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
| difference    | 15- |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
| (°C)          |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               | 10- |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     | Ħ  |                |        |     |    |    |     |     |      |    | H  | Ħ   |                |        | +              |   |   | Ħ      |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    | H   |                |        |                |   |   |        |   |  |
|               | 5-  |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |
|               |     |          | Ħ    |    | I              |        |    |     |    |                |        | I   | Ī  |    |     |     |      |    |    | I   |                |        | $\blacksquare$ | I |   |        |   |  |
|               |     |          |      |    | f              |        | Ħ  | H   |    | #              |        |     |    |    | Ħ   | Ħ   | Ħ    |    | H  | Ħ   | $\blacksquare$ |        |                |   |   |        |   |  |
|               | 0-  |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   | Ħ      |   |  |
|               |     | b        |      |    | 2              |        |    |     |    | 4              |        |     |    |    | (   | 5   |      |    |    |     | 8              |        |                |   |   | 1      | 0 |  |
|               |     |          |      |    |                |        | Th | icl | kn | es             | S      | of  | in | su | lat | ior | ı (r | nn | n) |     |                |        |                |   |   |        |   |  |
|               |     |          |      |    |                |        |    |     |    |                |        |     |    |    |     |     |      |    |    |     |                |        |                |   |   |        |   |  |

© OCR 2019 Turn over

......[1]

|     | [2]                                                             |
|-----|-----------------------------------------------------------------|
|     | 2                                                               |
|     |                                                                 |
|     | 1                                                               |
|     | Describe two <b>different</b> ways of improving the experiment. |
| (e) | This experiment could be improved.                              |

# 13 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

17 A student wants to investigate how a ball bounces.

He drops the ball from different heights and measures the bounce height each time.



He calculates the ratio bounce height / drop height.

The table shows his results.

| Drop height (cm) | Bounce height (cm) | Bounce height / drop<br>height |  |  |  |  |
|------------------|--------------------|--------------------------------|--|--|--|--|
| 100              | 70                 | 0.70                           |  |  |  |  |
| 80               | 64                 | 0.80                           |  |  |  |  |
| 60               | 54                 | 0.90                           |  |  |  |  |
| 40               | 40                 | 1.00                           |  |  |  |  |
| 20               |                    |                                |  |  |  |  |

| (a) | The student predicts the | ne ratio bounce h | eight / drop | height to b | e 1:1 wh | en the d | rop height is | S |
|-----|--------------------------|-------------------|--------------|-------------|----------|----------|---------------|---|
|     | 20 cm.                   |                   |              |             |          |          |               |   |
|     |                          |                   |              |             |          |          |               |   |

| (i)  | Suggest why he has made this prediction.                                 |
|------|--------------------------------------------------------------------------|
|      |                                                                          |
|      |                                                                          |
| (ii) | Use ideas about energy to explain why this prediction cannot be correct. |
|      |                                                                          |
|      | [1]                                                                      |

| (b) | Sug  | ggest <b>two</b> improvements to his experiment.                                                                      |
|-----|------|-----------------------------------------------------------------------------------------------------------------------|
|     | 1    |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     | 2    |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      | [2]                                                                                                                   |
| (c) | The  | e mass of the ball is 60 grams.                                                                                       |
| (0) | 1116 |                                                                                                                       |
|     | (i)  | Calculate the mass of the ball in kg.                                                                                 |
|     |      |                                                                                                                       |
|     |      | Mass = kg [1]                                                                                                         |
|     | (ii) | Calculate the potential energy of the ball when it is 0.80 m above the ground.                                        |
|     |      | Use your answer to <b>(c)(i)</b> and the equation:<br>potential energy = mass × height × gravitational field strength |
|     |      | Gravitational field strength = 10 N/kg                                                                                |
|     |      |                                                                                                                       |
|     |      |                                                                                                                       |
|     |      | Potential energy = J [2]                                                                                              |

18 (a) Lenses can be used to help people see clearly.

Fig. 18.1 is a diagram of a convex lens.



Fig. 18.1

(i) A student models the lens using two glass **prisms** and a glass **block**.

Complete the ray diagram **Fig. 18.2** to show how light rays travel through the model lens (glass prism and glass block).



Fig. 18.2

[2]

(ii) Explain how a convex lens can correct long-sighted vision.

Use the model in Fig. 18.2 to help you.

| <br> | <br> |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
| <br> | <br> |
|      |      |
|      |      |
|      |      |
|      |      |

(b) A student looks at coloured paper in different coloured light.

Fig. 18.3 is a diagram of her experiment.



Fig. 18.3

She looks at red paper with red light. The paper appears red.

What colour does the red paper appear in blue light?

| Explain your answer. |  |  |
|----------------------|--|--|
|                      |  |  |
|                      |  |  |

| A student looks at two identical metal spoons, <b>A</b> and <b>B</b> .                                     |
|------------------------------------------------------------------------------------------------------------|
| Spoon <b>A</b> was placed in hot water at 70 °C.                                                           |
| Spoon <b>B</b> is at 20 °C.                                                                                |
| (a) Which spoon emits the most radiation?                                                                  |
| Tick (✓) one box.                                                                                          |
| Spoon A                                                                                                    |
| Spoon <b>B</b>                                                                                             |
| Explain your answer.                                                                                       |
|                                                                                                            |
| [1]                                                                                                        |
| (b) Explain why both spoons look identical to the student, even though they are at different temperatures. |
|                                                                                                            |
|                                                                                                            |
| [1]                                                                                                        |

# 19 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

20 (a) Fig. 20.1 is a graph of a wave.



Fig. 20.1

(i) Use the graph in Fig. 20.1 to work out the time period of the wave.

What is meant by the term **frequency**?

(b) A water wave has a frequency of 0.25 Hz and a wavelength of 6.0 m.Calculate the speed of the wave.

Speed of the wave = ..... m/s [3]

(c) Surface water waves can be modelled using a slinky spring.

A student holds one end of the spring on a table. The other end is fixed to a wall.

Fig. 20.2 shows the spring viewed from above the table.



Fig. 20.2

| (i) | Draw two arrows <b>on the diagram</b> in <b>Fig. 20.2</b> to show the movement of | the student's |
|-----|-----------------------------------------------------------------------------------|---------------|
|     | hand when he makes a transverse wave.                                             | [1]           |
|     |                                                                                   |               |

| (ii) | Describe what happens to the <b>transverse</b> wave at the wall. |
|------|------------------------------------------------------------------|
|      |                                                                  |
|      |                                                                  |
|      | [1]                                                              |

(iii) In Fig. 20.3 the student stops moving his hand.

This is what the coils in the spring look like after a short time:



Fig. 20.3

This model of a water wave shows that the wave travels **not** the water.

Explain why.

| <b>21</b> * / | 4 student | does an | experiment | using | 0.2  kg | of water |
|---------------|-----------|---------|------------|-------|---------|----------|
|---------------|-----------|---------|------------|-------|---------|----------|

Here is some information from the experiment:

The aim is to find the energy needed to raise the temperature of the water by 20 °C.

An electrical heater is used to heat the water. The temperature of the water increases by  $20\,^{\circ}\text{C}$ .

The specific heat capacity of water is 4200 J/kg °C.

Describe how the student should carry out the experiment, including the equipment used.

In your answer calculate the change in internal energy for the water.

You may include a diagram in your answer.

| <br> |
|------|
| <br> |
|      |
|      |
|      |
|      |
| [6]  |
| ıb   |

22 Atoms can absorb and emit electromagnetic radiation.

| (a) | Describe <b>two</b> possible effects on an electron in an atom when it absorbs electromagnetic radiation. |
|-----|-----------------------------------------------------------------------------------------------------------|
|     | 1                                                                                                         |
|     |                                                                                                           |
|     | 2                                                                                                         |
|     | [2]                                                                                                       |
| (b) | Alpha radiation is <b>not</b> emitted in the processes in part (a).                                       |
|     | Explain why.                                                                                              |
|     |                                                                                                           |
|     |                                                                                                           |
|     | 101                                                                                                       |

| 22 | <b>/-</b> \ | A al: a4:    |               | -           | . la   |
|----|-------------|--------------|---------------|-------------|--------|
| ZS | (a)         | Aradioactive | isotope has a | nan-me or c | nours. |

50 g of the isotope are put in a container.

What mass of the isotope is left after 6 hours?

(b) This is a graph showing the radiation emitted from samples of three different isotopes A, B and C.



| (i) | Which isotope, <b>A</b> , <b>B</b> or <b>0</b> | C, | takes the | longest | time to | decay? |
|-----|------------------------------------------------|----|-----------|---------|---------|--------|
|-----|------------------------------------------------|----|-----------|---------|---------|--------|

[1]

Tick (✓) one box.

| Δ      |  |
|--------|--|
| $\sim$ |  |

(ii) Two scientists discuss the isotopes in the graph.

| Scientist 1                                                 | Scientist 2                                                 |
|-------------------------------------------------------------|-------------------------------------------------------------|
| 'I think isotope <b>A</b> is more hazardous than <b>B</b> . | 'I think isotope <b>B</b> is more hazardous than <b>A</b> . |
| A has a higher activity than B.'                            | <b>B</b> has a longer half-life than <b>A</b> .'            |

| Do you agree with the views of scientist 1 and scientist 2?                       |
|-----------------------------------------------------------------------------------|
| Use the graph and ideas about radioactivity and half-life to explain your answer. |
| Scientist 1                                                                       |
|                                                                                   |
|                                                                                   |
|                                                                                   |
| Scientist 2                                                                       |
|                                                                                   |
|                                                                                   |
|                                                                                   |
| [4]                                                                               |

| (iii) Odicinate i wanto to identity the type of identition of interest by loctope | entify the type of radiation emitted by isotope A. | Scientist 1 wants to identi | (iii) |
|-----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-------|
|-----------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|-------|

This is a list of equipment **Scientist 1** has in his laboratory:

- radiation detector
- piece of thick lead
- piece of cardboard
- piece of aluminium.

Describe how **Scientist 1** does the experiment and explain how they can work out the type of radiation emitted.

You may include a diagram in your answer.

| <br>   |
|--------|
| <br>   |
|        |
| <br>   |
| <br>   |
| <br>[4 |

(c) This is a diagram to show a nuclear fusion reaction:

|       | 0              | +                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                         | 8                                                                                                                                                                          | +                                                                                                                                                      | Zi.Z                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|-------|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| hyd   | drogen-1       | +                                                                                   | hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -2 →                                                                                                                                                                                    | helium-3                                                                                                                                                                   | +                                                                                                                                                      | energy                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
| (i)   | Explain v      | why th                                                                              | nis is nucle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ear fusion.                                                                                                                                                                             |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                   |
| (ii)  | It is diffic   | ult for                                                                             | nuclear f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | usion reac                                                                                                                                                                              | tions to oc                                                                                                                                                                | cur on Ea                                                                                                                                              | rth.                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       | Explain v      | why n                                                                               | uclear fusi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion reactio                                                                                                                                                                             | ns occur ir                                                                                                                                                                | the Sun.                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | [2]                                                                                                                                                                                                                                                                                                                                   |
| (iii) | What will      | l happ                                                                              | en to our                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sun when                                                                                                                                                                                | it runs out                                                                                                                                                                | of hydrog                                                                                                                                              | jen?                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                   |
| Son   | ne scientis    | sts sa                                                                              | y nuclear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fission is r                                                                                                                                                                            | enewable.                                                                                                                                                                  | Other scie                                                                                                                                             | entists say it                                                                                                                                                                                                                                                                                              | is non-renewab                                                                                                                                                                                                                                                                                                                                            | le.                                                                                                                                                                                                                                                                                                                                   |
| Sug   | gest why       | the so                                                                              | cientists d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | isagree.                                                                                                                                                                                |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                       |
|       |                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                         |                                                                                                                                                                            |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                           | [1]                                                                                                                                                                                                                                                                                                                                   |
|       | (ii) (iii) Son | (ii) Explain (iii) It is diffice Explain (iii) What will some scienting Suggest why | (ii) Explain why the second control of the s | (ii) Explain why this is nucle  (iii) It is difficult for nuclear for Explain why nuclear fus  (iii) What will happen to our  Some scientists say nuclear  Suggest why the scientists d | (ii) Explain why this is nuclear fusion.  (iii) It is difficult for nuclear fusion reaction.  Explain why nuclear fusion reaction.  (iii) What will happen to our Sun when | (ii) Explain why this is nuclear fusion.  (iii) It is difficult for nuclear fusion reactions to occur in Explain why nuclear fusion reactions occur in | (ii) Explain why this is nuclear fusion.  (iii) It is difficult for nuclear fusion reactions to occur on Ear Explain why nuclear fusion reactions occur in the Sun.  (iii) What will happen to our Sun when it runs out of hydrogen scientists say nuclear fission is renewable. Other scientists disagree. | (ii) Explain why this is nuclear fusion.  (iii) It is difficult for nuclear fusion reactions to occur on Earth.  Explain why nuclear fusion reactions occur in the Sun.  (iiii) What will happen to our Sun when it runs out of hydrogen?  Some scientists say nuclear fission is renewable. Other scientists say it Suggest why the scientists disagree. | (ii) Explain why this is nuclear fusion.  (iii) It is difficult for nuclear fusion reactions to occur on Earth.  Explain why nuclear fusion reactions occur in the Sun.  (iii) What will happen to our Sun when it runs out of hydrogen?  Some scientists say nuclear fission is renewable. Other scientists say it is non-renewable. |

# 28 BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

|                                                                             |     | 29                                                                              |  |
|-----------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------|--|
| 24                                                                          | (a) | A TV has a power rating of 0.2kW.                                               |  |
|                                                                             |     | Calculate the energy transferred, in kWh, if the TV is switched on for 4 hours. |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     | Energy transferred =kWh [3]                                                     |  |
| (b) A different TV works with a 12.0 V battery. It has a current of 3.19 A. |     |                                                                                 |  |
|                                                                             |     | Calculate the power rating of the TV.                                           |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     | Power = W [3]                                                                   |  |
|                                                                             |     |                                                                                 |  |
|                                                                             |     |                                                                                 |  |

25 The graph shows thinking and braking distances for a car at different speeds.



| Key |                   |
|-----|-------------------|
|     | thinking distance |
|     | braking distance  |

(a) Describe how thinking distance varies with increasing speed.

Use data from the graph in your answer.

| (b) | (i)                           | Use the graph to find the <b>thinking distance</b> at 24 m/s.                 |  |  |  |  |  |
|-----|-------------------------------|-------------------------------------------------------------------------------|--|--|--|--|--|
|     |                               | Thinking distance = m [1]                                                     |  |  |  |  |  |
|     | (ii)                          | Calculate the <b>thinking time</b> at 24 m/s.                                 |  |  |  |  |  |
|     |                               | Use your answer to (b)(i) and the equation: distance travelled = speed × time |  |  |  |  |  |
|     |                               | Give your answer to 2 decimal places.                                         |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               | Thirding time                                                                 |  |  |  |  |  |
|     |                               | Thinking time = s [3]                                                         |  |  |  |  |  |
| (c) | (i)                           | State <b>one</b> factor that could <b>increase</b> thinking distance.         |  |  |  |  |  |
|     |                               | [1]                                                                           |  |  |  |  |  |
|     | (ii)                          | Calculate the <b>stopping distance</b> at 15 m/s.                             |  |  |  |  |  |
|     |                               | Use the graph to help you.                                                    |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               | Stopping distance = m [2]                                                     |  |  |  |  |  |
| (d) | Hov                           | w does the speed affect the kinetic energy and braking distance of the car?   |  |  |  |  |  |
|     | Use the graph in your answer. |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               |                                                                               |  |  |  |  |  |
|     |                               | [3]                                                                           |  |  |  |  |  |

#### **END OF QUESTION PAPER**

#### **ADDITIONAL ANSWER SPACE**

| If additional<br>must be clea | space is required, you should use the following lined page(s). arly shown in the margin(s). | The question number(s) |
|-------------------------------|---------------------------------------------------------------------------------------------|------------------------|
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |
|                               |                                                                                             |                        |



#### Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact The OCR Copyright Team, The Triangle Building, Shaftesbury Road, Cambridge CB2 8EA.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.