

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary GCE

CHEMISTRY A

F322 QP

Unit F322: Chains, Energy and Resources

Specimen Mark Scheme

The maximum mark for this paper is **100**.

Question Number	Answer	Max Mark
1(a)(i)	120–130 ✓	[1]
(ii)	boiling point increases with increase in M_r /molecular formula/number of carbon atoms/chain length \checkmark more intermolecular forces/electrons/surface area/	
	surface interactions/van der Waal forces ✓	[2]
(b)	C ₁₃ H ₂₈ ✓	[1]
(c)	$C_9H_{20} \rightarrow C_7H_{16} + C_2H_4 \checkmark$	[1]
(d)(i)	Any branched isomer of heptane with correct name, e.g.	
	✓ 2-methylhexane ✓	[2]
(ii)	+ H ₂	
	\checkmark \checkmark	[2]
(e)(i)	species with an unpaired electron \checkmark	[1]
(ii)	uv (light)/high temperature/min of 400 $^{\circ}$ C/sunlight \checkmark	[1]
(iii)	homolytic (fission) ✓	[1]
(iv)	$\begin{array}{rcl} C_4H_{10} \ + \ CI^{\bullet} & \longrightarrow & C_4H_9^{\bullet} \ + \ HCI \checkmark \\ C_4H_9^{\bullet} \ + \ CI_2 & \longrightarrow & C_4H_9CI \ + \ CI^{\bullet} \checkmark \end{array}$	[2]
2(a)(i)	8.72/136.9 = 0.0637 mol ✓	[1]
(ii)	$M_{\rm r}$ butan-1-ol = 74(.0) \checkmark moles = 4.28/74.0 = 0.0578 mol \checkmark	[2]
(iii)	0.0578/0.0637 x 100 = 90.7% ✓	[1]

Question Number	Answer	Max Mark
(b)(i)	substitution/hydrolysis ✓	[1]
(ii)	electron pair donor ✓	[1]
(iii)	$CH_{3}CH_{2}CH_{2} \xrightarrow{\delta+}_{CH_{2}} \xrightarrow{Br} CH_{3}CH_{2}CH_{2} \xrightarrow{CH_{2}} OH + Br^{\check{S}}$ OH correct dipole \checkmark curly arrow from the O in the OH- to C in the CH ₂ \checkmark	
	curly arrow to show movement of bonded pair in the C–Br bond \checkmark Br ⁻ as a product \checkmark	[4]
(c)(i)	Any two realistic fragments, e.g. CH_3^+ : 15; $C_2H_5^+$: 29; $C_3H_7^+$: 43; $C_4H_9^+$: 57; OH^+ : 17, etc. $\checkmark\checkmark$ Do not penalise missing charge.	[2]
(ii)	breathalysers/monitoring of air pollution, MOT emission testing, <i>etc</i> . \checkmark	[1]
3(a)	Availability of starting materials: availability sugar is renewable because it can be grown ✓ ethane is finite because it is obtained by processing of crude oil ✓ energy: fermentation: energy is required for distillation/ hydration: energy is required to generate steam ✓	
	 atom economy and waste products: atom economy for fermentation < atom economy hydration ✓ In fermentation, CO₂ is produced in addition to ethanol/ethanol is not the only product ✓ In hydration, ethanol is the only product/hydration is an addition reaction ✓ Atom economy of fermentation could be increased by finding a use CO₂ ✓ M Atom economy linked to a chemical equation to show that hydration has 100% atom economy/fermentation has 51% atom economy ✓ 	[7max]

Question Number	Answer	Max Mark
(b)(i)	(volatile components) can escape/distil out ✓ ethanal is most volatile/bpt less than 60 °C/partial oxidation ✓	[2]
(ii)	(volatile components) cannot escape/ refluxed \checkmark complete oxidation will be achieved/oxidised to the acid \checkmark	[2]
(c)	$C_2H_5OH + 2[O] \longrightarrow CH_3COOH + H_2O$ C_2H_5OH , 2[O] and CH ₃ COOH ✓ rest of equation ✓	[2]
(d)	spectrum C: only shows absorption at 1700 cm ⁻¹ for the C=O \checkmark the other two spectra contain the OH group absorption at approx 3000 cm ⁻¹ \checkmark	[2]
4(a)(i)	bond breaking is endothermic/ energy has to be put in to break a bond ✓	[1]
(ii)	bonds broken: $3(C-H) + (C-O) + (O-H) + 1.5 (O=O) = 2781 \text{ kJ } \checkmark$ bonds made: $2(C=O) + 4(O-H) = 3470 \text{ kJ } \checkmark$ $\Delta H_c = -689 \text{ (kJ mol}^{-1}) \checkmark$	[3]
(b)(i)	(heat/energy change) when 1 mole of substance is formed \checkmark from its elements \checkmark	[2]
(ii)	1 atm/101 kPa and a stated temperature/25 $^{\circ}\text{C}/298$ K \checkmark	[1]
(iii)	C(s) + $\frac{1}{2}$ O ₂ (g) → CO(g) balanced equation forming 1 mol CO \checkmark state symbols \checkmark	[2]
(iv)	cycle drawn/sum of ΔH (products) – ΔH (products) \checkmark -75 – 242 + x = -110 \checkmark ΔH = (+)207 kJ mol ⁻¹ \checkmark	[3]
(c)	production of margarine/ammonia/Haber process ✓	[1]

Question Number	Answer	Max Mark
5(a)	when the conditions on a system in equilibrium are changed \checkmark the equilibrium moves to minimise the effects of the change/ counteract/ resist/ oppose the change \checkmark	[2]
(b)(i)	equilibrium moves towards LHS/ towards NO ₂ \checkmark forward reaction is exothermic/ reverse reaction is endothermic \checkmark	[2]
(ii)	equilibrium moves towards RHS/ towards N_2O_4 (1) fewer moles on RHS (1) \checkmark	[2]
(iii)	no change in equilibrium position \checkmark catalyst speeds up forward ad reverse reactions by same amount \checkmark	[2]
(c)(i)	curve displaced to the right \checkmark maximum is lower \checkmark	[2]
(ii)	area under curve exceeding E_a = number of molecules that can react \checkmark at higher temperature, area under curve > E_a is greater so more can react \checkmark	[2]
6(a)	O₂ CIO ✓ (both needed)	
	$O_3 + O \rightarrow 2O_2 \checkmark$	[2]
(b)(i)	$C_7H_{16} + 11\frac{1}{2}O_2 \longrightarrow 7CO_2 + 8H_2O$ products \checkmark balance \checkmark	[2]
(ii)	absorb IR ✓ C=O bonds vibrate. ✓	[2]
(c)(i)	$M_{\rm r} {\rm C_7 H_{16}} = 100 \checkmark$ amount = 2000/100 = 20 mol \checkmark	[2]
(ii)	energy saved = 20 x 4817 = 9634 kJ ✓	[1]
(iii)	moles $CO_2 = 7 \times 20 = 140 \text{ mol } \checkmark$ decrease in $CO_2 = 140 \times 24 = 3360 \text{ dm}^3 \checkmark$	[2]

Question Number	Answer	Max Mark
(d)	mole ratio = $88.89/12$: $11.1/1 = 7.41$: $11.1 \checkmark$ empirical formula = $C_2H_3 \checkmark$ relative mass of $C_2H_3 = 27$. $M_r = 2 \times 29$ so molecular formula = $C_4H_6 \checkmark$ X reacts with 2 mol H ₂ so there are 2 double bonds \checkmark Possible structure = 1,3-butadiene /	
		[5]
7(a)	structural isomerism: structural isomers: same molecular formula, different structural formula \checkmark structural isomers of but-1-ene: but-2-ene \checkmark and methylpropene \checkmark	
	geometric isomerism C=C prevents rotation of the double bond ✓ each C in the C=C double bond bonded to 2 different atoms or groups ✓ ✓ a clear statement that links non-rotation of the double bond to the idea of groups being trapped on one side of the double bond ✓	
	<i>cis</i> but-2-ene clearly identified ✓ <i>trans</i> but-2-ene clearly identified ✓	[7]
7 (b) 1st bullet	product: $CH_3CH_2CHBrCH_2Br \checkmark$ equation: $CH_3CH_2CH=CH_2 + Br_2 \longrightarrow CH_3CH_2CHBrCH_2Br \checkmark$ products: $CH_3CH_2CHBrCH_3$ and $CH_3CH_2CH_2CH_2Br \checkmark$ (or statement that 2-bromo- is formed) equation: $CH_3CH=CHCH_3 + HBr \longrightarrow CH_3CH_2CHBrCH_3 \checkmark$ (<i>i.e.</i> for one product)	
	products: $CH_3CH_2CHOHCH_3$ and $CH_3CH_2CH_2CH_2OH \checkmark$ (or statement that 2-ol is formed) equation: $CH_3CH=CHCH_3 + H_2O \longrightarrow CH_3CH_2CHOHCH_3 \checkmark$ (<i>i.e.</i> for one product)	[6]

Question Number	Answer	Max Mark
7 (b) 2nd bullet	$\begin{array}{c} H & CH_3 & H & CH_3 \\ \hline C & C & C & C \\ \hline C & C & C & C \\ \hline C & H_3 & H & CH_3 \\ \hline \end{array}$ 1 mark for skeleton with two repeat units \checkmark 1 mark for correct groups on side chains \checkmark	[2]
7 (b) 3rd bullet	two ✓✓ from energy from incineration development of biodegradable polymers cracking of waste polymers	[2]
	Paper Total	[100]