Question	Working	Answer	Mark	AO	Sub-total	Total
1	$\frac{22.5}{60} \times 100$		M1	1.1		
		37.5(%)	A1			2
2	$\frac{25}{8} \times \frac{10}{41}$ or 3.125 ÷ 4.1		M1	1.1		
	N.B. No working scores M0 A0	$\frac{125}{164}$ (cao)	A1			2
3	$\frac{1}{2}x = 1 - 1.25$ or $2x = 4 \times 1 - 5$		M1	1.3		
		$-\frac{1}{2}$	A1			2
4	$42 = 2 \times 3 \times 7$ $84 = 2 \times 2 \times 3 \times 7$ $154 = 2 \times 7 \times 11$ Prime factors of two of 42, 84 and 154 or $42 = 3 \times 14$ $84 = 6 \times 14$ $154 = 11 \times 14$ Two of above or Attempt at factor tree for two of the numbers		M1	1.1		
		HCF = 14	Al			2

International GCSE in Mathematics B - Paper 1 mark scheme

Question	Working	Answer	Mark	AO	Sub-total	Total
5				1.3		
		-2, 1, 4	B2			2
		1	(-1 eeoo)	2.6	1	
6(a)		I	B1	2.6	1	
6(b)		2	B1		1	2
<u>6(b)</u> 7	$\overrightarrow{OC} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} + \begin{pmatrix} -5 \\ 7 \end{pmatrix}$		M1	2.8		
		$\begin{pmatrix} -2\\ 3 \end{pmatrix}$	A1			2
8	85 mm or 35 mm		M1	1.1		
		240	A1	2.7		2
9	$P(1, 1) + P(1, 2) = \frac{1}{6} + \frac{1}{6}$ (oe)		M1	3.10		
		$\frac{2}{6}, \frac{1}{3}, 0.333, 33.3\%$				
			A1			2
10	$x+3+2\sqrt{3x} = y+6\sqrt{2}$		M1	1.3		
	$\sqrt{3x} = 3\sqrt{2}$		M1 (DEP)			
		x = 6, y = 9	A1			3
11(a)		е	B1	1.2	1	
11(b)		i, j	B1		1	
11(c)		g, h, i, j	B1		1	3

Question	Working	Answer	Mark	AO	Sub-total	Total
12	$\left(\frac{2}{5}\right)^3$ or $\left(\frac{5}{2}\right)^3$ seen		B1	2.6		
	N.B. accept ratio or decimal form					
	$\frac{500}{V} = \left(\frac{5}{2}\right)^3 \text{(oe)}$		M1			
	(or $\sqrt[3]{500}$ seen		(B1)			
	$\left(\frac{2}{5} \times \sqrt[3]{500}\right)^3 (\text{oe}))$		(M1)			
		32 (cao)	A1			3
13	$y = \frac{x - 4}{3}$		M1	1.4		
(a)		$(m=)\frac{1}{3}$	A1		2	
(b)	N.B. The M marks is awarded once only	$(m=)\frac{1}{3}$ $-\frac{4}{3}$	A1		1	3
14(a)						
14(b)	0.76 × 600	$0.24, \frac{6}{25}, 24\%$	B1 M1	3.10	1	
		456	A1		2	3

Question	Working	Answer	Mark	AO	Sub-total	Total
15	$\frac{y-4}{x-1} = \frac{-5-4}{-2-1}$ (oe)		M1	1.4		
	x - 1 - 2 - 1		M1 DEP			
	y-4=(3)(x-1)		MI DEP			
	(oe, removing denominators)					
		y = 3x + 1	A1			3
16(a)		(24 -10)	B2	1.5	2	
		$\begin{pmatrix} 13 & 11 \end{pmatrix}$	(-1eeoo)			
		(-9 7)	B2		2	4
16(b)		$\begin{pmatrix} -10 & 0 \end{pmatrix}$	(-leeoo)			
17	$(:: \angle EDG = ADC 90^{\circ})$			2.6		
	$\begin{pmatrix} \because \angle EDG = ADC & 90^{\circ} \\ \text{and} & \because \angle ADG \text{ is common} \end{pmatrix}$					
	$\angle EDA = CDG$		B1			
	$\therefore \Delta s \frac{EDA}{GDC}$ are congruent		B1			
	(SAS)	(22)	B1			
	Hence $AE = CG$	(cc)	DI			
	Two reasons (those in brackets above)		B1			4

Question	Working	Answer	Mark	AO	Sub-total	Total
18	Rearranging st coefficient of x or y is the same in both equations or isolating x or y		M1	1.3		
	Subtract or adding equations or substituting expression for x or y to obtain y or x N.B. Allow a total of 1 slip in both M marks.		M1 DEP			
		$\begin{array}{c} x = 3 \\ y = 4 \end{array}$	A1 A1			4
19	52 = $k\sqrt{169}$ (oe) $x = \left(\frac{68}{"4"}\right)^2$ (or 52 = $k\sqrt{169}$ and 68 $k\sqrt{x}$ $\frac{\sqrt{x}}{\sqrt{169}} = \frac{\sqrt{x}}{13} = \frac{68}{52}$ (oe)) N.B. Just seeing above line without sight of the first line earns both M marks	k = 4 (oe, can be implied)	M1 A1 M1 DEP (M1) (M1 DEP)	1.4		
	marks	$\left(\sqrt{x} = \frac{68}{4} (\text{oe})\right)$ $x = 289 \text{ (cao)}$	(A1) A1			4

Question	Working	Answer	Mark	AO	Sub-total	Total
20(a)	$\angle CAD = 90^{\circ}, \ \angle ACD = 28^{\circ}$		B1, B1	2.6		
		62	B1		3	
20(b)		118	B1 ft		1	4
21(a)		x = n - 4, y = n - 2	B1	1.3	1	
21(b)	3n - 6		M1			
	<i>n</i> even \therefore 3 <i>n</i> – 6 is divisible by 6	(cc)	A1	1.1	2	
21(c)						
		10, 12, 14 (oe)	B1		1	4
22(a)				2.5		
	$\frac{75}{360} \times r^2 \times \pi = 200$		M1	2.7		
	360	17.5 (17.48077)	A1	1.3	2	
22(b)	$\frac{75}{360} \times 2 \times \pi \times 17.5'$		M1	2.7		
	+2×'17.5'		M1 DEP			
		57.9 (57.84678)	A1		3	5

Question	Working	Answer	Mark	AO	Sub-total	Total
23(a)		4	B1	3.10	1	
23(b)	Rearranging the number of minutes in		M1			
	order	5	A1		2	
23(c)	$\frac{6\!+\!4\!+\!11\!+\!9\!+\!4\!+\!5\!+\!6\!+\!5\!+\!4}{9}$		M1			
	$\left(=\frac{54}{9}\right)$	6	A1		2	5
24(a)	$(r+6)^2 = r^2 + 72$		B1	2.6	1	
	or $r = \sqrt{(r+6)^2 - (\sqrt{72})^2}$					
	or $6 \times (6 + 2r) = 72$ (oe)					
24(b)	$r^2 + 12r + 36 = r^2 + 72$ (oe)		M1	1.3		
	or $36 + 12r = 72$	r = 3 (cao)	A1	1.3	2	
24(c)	$\sin \angle OPC = \frac{'3'}{'3'+6} (oe)$		M1	2.9		
		$\angle OPC = 90^{\circ}$	A1	2.9	2	5

Question	Working	Answer	Mark	AO	Sub-total	Total
25(a)	$90 + 28t - 3t^2$ (2 terms correct)	(cao)	M1 A1	1.4 1.4	2	
25(b)	$90 + 28t - 3t^{2} = 0 $ (oe)		M1	1.4		
	$\frac{+28 \pm \sqrt{(-28)^2 - 4 \times (3) \times (-90)}}{2 \times 3}$ (Solving 3 term quadratic)		M1 DEP	1.3		
	$\sqrt{1864}$, 43.17		B1	1.3		
		awrt 11.9	A1	1.4	4	6
26(a)	$2 \times (-1.5)^{3} - 3 \times (-1.5)^{2} - 17 \times (-1.5) - 12$ (substitute)		M1	1.3		
		= 0	A1		2	
26(b)	x^2-3x	$x^2 - 3x - 4$	M1 A1			
	(x-4)(x+1) (solving trinomial quadratic)		M1 INDEP			
		(2x+3)(x-4)(x+1)	A1		4	6

Question	Working	Answer	Mark	AO	Sub-total	Total
27(a)	Rewriting (or solving) $x^2 - x - 6 < 0$ as		N(1	1.3		
	(x-3)(x+2) (solving trinomial		M1			
	quadratic marking rules)					
		x = 3 and $x = -2$	A1			
		x < 3	A1ft		4	
		x > -2	A1ft			
		(or -2 < x < 3)	(A2 ft)			
			B1 ft			
27(b)	Open circles at ' $x = -2$ and $x = 3$ ' Line joining ' $x = -2$ and $x = 3$ '		B1 ft		2	6
	Penalise ncc ONCE only in question					
28(a)	$\frac{5}{-5} = \frac{CD}{-5}$					
	sin 30 sin 140		M1	2.9		
	$5 \times \sin 140$					
	$CD = \frac{5 \times \sin 140}{\sin 30}$		M1 DEP			
		6.43	A1		3	
28(b)	AC $(AC - 2711)$		M1	2.9		
	$\frac{AC}{6.428'}$ = $\pm an 30 (AC - 3.711)$		M1	2.6		
	$\angle BCA = 80^{\circ}$		M1 DEP			
	$\Delta ABC = \frac{1}{2} \times AC' \times 5 \times \sin'80'$	9.14	A1	2.7	4	7
	2					,