Write your name here		
Surname	Other na	ames
Edexcel GCE	Centre Number	Candidate Number
Chemistr	У	
	ciples of Chemist d Further Organi noptic assessme	c Chemistry
Unit 4: General Prin Equilibria ar	nd Further Organi /noptic assessmei	c Chemistry nt) Paper Reference
Unit 4: General Prin Equilibria ar (including sy	d Further Organi noptic assessme 2 – Morning	c Chemistry nt)
Unit 4: General Prin Equilibria an (including sy Wednesday 13 June 2012	d Further Organi /noptic assessme 2 – Morning s	c Chemistry nt) Paper Reference

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** guestions.
- Answer the questions in the spaces provided - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each guestion.
- Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

PEARSON

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box ⊠. If you change your mind, put a line through the box ⊠ and then mark your new answer with a cross ⊠.

- 1 Which of the following interacts with the nuclei of hydrogen atoms in a nuclear magnetic resonance spectrometer?
 - A Gamma rays
 - B X-rays
 - C Microwaves
 - **D** Radio waves

(Total for Question 1 = 1 mark)

2 HPLC stands for

- A high pressure liquid column.
- **B** high performance liquid chromatography.
- C heterogeneous phase liquid chromatography.
- **D** homogenous phase liquid column.

(Total for Question 2 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

3	Consid	er the equilibrium below.
		$\operatorname{CO}(g) + \operatorname{Cl}_2(g) \rightleftharpoons \operatorname{COCl}_2(g)$
	(a) An	increase in pressure by a factor of 2 will
	A	(1) quadruple $K_{\rm p}$.
	B	double $K_{\rm p}$.
	C	have no effect on $K_{\rm p}$.
	D 🛛	halve $K_{\rm p}$.
	(b) The	e units of K_p are (1)
	A	atm^{-2}
	B	atm^{-1}
	C	atm
	D D	atm ²
_		(Total for Question 3 = 2 marks)
4	Which	of these will not improve the overall yield of the Haber process?
		$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ $\Delta H = -92 \text{ kJ mol}^{-1}$
	A 🛛	Increasing the pressure.
	B	Liquefying then removing the ammonia from the reaction.
	C	Increasing the temperature.
	D	Recycling unreacted nitrogen and hydrogen.
_		(Total for Question 4 = 1 mark)
5	The eq	uation for the reaction between ethanoic acid and phosphorus(V) chloride is
	A	$CH_3COOH + PCl_5 \rightarrow CH_3COCl + POCl_3 + HCl$
	B	$CH_{3}COOH + PCl_{5} \rightarrow CH_{3}COOCl + PCl_{3} + HCl$
	C	$CH_3COOH + PCl_5 \rightarrow CH_3COCl + PCl_3 + HOCl$
	D	$2CH_{3}COOH + PCl_{5} \rightarrow (CH_{3}CO)_{2}O + PCl_{3} + H_{2}O + Cl_{2}$
_		(Total for Question 5 = 1 mark)

1

P 3 9 3 0 8 A 0 3 2 4

3

(a) The two monomers needed to form this polymer are

(b) The type of reaction to form this polymer is

(1)

- \square **A** addition.
- **B** substitution.
- \Box C condensation.
- \square **D** hydrolysis.

(Total for Question 6 = 2 marks)

 \square A HSO₄⁻ + H₃O⁺ \rightarrow H₂SO₄ + H₂O \square **B** HSO₄⁻ + Ba²⁺ \rightarrow BaSO₄ + H⁺ \square C HSO₄⁻ + H₂O \rightarrow SO₄²⁻ + H₃O⁺ \square **D** HSO₄⁻ + CO₃²⁻ \rightarrow SO₄²⁻ + HCO₃⁻ (Total for Question 7 = 1 mark) The reaction below is carried out at 25 °C. Use the equation and the data to answer the 8 questions that follow. $\Delta H = -107.4 \text{ kJ mol}^{-1}$ $SO_2(g) + 2H_2S(g) \rightarrow 3S(s) + 2H_2O(g)$ Standard molar entropy, S^{\ominus} Substance $/ J mol^{-1} K^{-1}$ 248 $SO_2(g)$ 206 $H_2S(g)$ $H_2O(g)$ 189 S(s)32 (a) The standard entropy change of the system, in $J \mod^{-1} K^{-1}$, is (1) **▲** A −186 **B** +186 **B** −186 **C** −233 \square **D** +233 (b) The standard entropy change of the surroundings, in J mol⁻¹ K⁻¹, is (1) \square A 107.4 × 1000 / 25 **B** $-107.4 \times 1000 / 25$ \Box C 107.4 × 1000 / 298 **D** $-107.4 \times 1000 / 298$ (Total for Question 8 = 2 marks)

In which of these reactions is the hydrogensulfate ion, HSO₄⁻, behaving as a Brønsted-

7

Lowry base?

5

ir	The rate	te equation for the reaction is rate = k [RX]. Which of these statements is ect?
X	A	
		Rate \propto [RX].
_	B	RX is a primary halogenoalkane.
	C	The reaction mechanism is $S_N 1$.
X	D	A carbocation intermediate forms in the reaction.
		(Total for Question 9 = 1 mark)
0 T	he rat	e equation for the reaction between hydrogen gas and nitrogen monoxide gas is
		rate = $k[NO]^2[H_2]$
If	f the c	concentration of both reactants is doubled, the rate will increase by a factor of
	A	3
	B	4
X	C	6
×	D	8
		(Total for Question 10 = 1 mark)

		Reactant	Concentration / mol dm ⁻³	
		Х	0.040	
		Y	0.20	
		Ζ	0.12	
 A B C D (b) The A B 	numerical val 0.00080 0.533 1.875 1250 e units for the $mol^{-3} dm^9 s^{-1}$ mol ³ dm ⁹ s ⁻¹ mol ⁻³ dm ⁻⁹ s	rate constant, <i>k</i> , are		(1)
D	$mol^3 dm^{-9} s^{-1}$			
	mor um s		(Total for Question $11 = 2$	marks)
Use th	iis space for a	ny rough working. Ai	nything you write in this space will g	ain no cre

10		
	This question is about the four organic substances shown below.	
	A $CH_3CH_2CH_2CH_2CHO$	
	B CH ₃ CH ₂ CH ₂ CH ₂ COOH	
	C $CH_3COCH_2CH_2CH_3$	
	D $CH_3CH_2CH_2CH_2COC1$	
	Which substance will	
	(a) give a positive result with both Brady's and Tollens' reagents?	(1)
	B	
	C	
	D D	
	(b) be formed by the oxidation of a secondary alcohol?	(1)
		(1)
	B	
	C C	
	\square D	
	(c) form the most acidic solution when equal amounts are each mixed with 100 cm ³ of water?	
		(1)
	B	
	C	
	D	
	(d) form steamy fumes in the reaction with PCl ₅ ?	(4)
	A	(1)
	B	
	C C	
	D	
	(Total for Question $12 = 4$ ma	rks)

13 In order to make CH₃CH₂CONHCH₃, you could use

- \blacksquare A CH₃CH₂COOCH₃ + NH₃
- \square **B** CH₃CH₂COCl + CH₃NH₂
- $\square C \quad CH_3CH_2COO^-Na^+ + CH_3NH_2$
- $\square \mathbf{D} \quad CH_3CH_2CONH_2 + CH_3NH_2$

(Total for Question 13 = 1 mark)

TOTAL FOR SECTION A = 20 MARKS

SECTION B

Answer ALL the questions. Write your answers in the spaces provided.

- 14 In a pH titration, 30 cm³ of sodium hydroxide solution was added, in 1 cm³ portions, to 20 cm³ of ethanoic acid solution, CH₃COOH(aq). The concentration of both solutions was 0.50 mol dm⁻³. After the addition of each 1 cm³, the pH was recorded using a pH meter.
 - (a) (i) Write the K_a expression for ethanoic acid.

(ii) Using your answer to (i), calculate the pH of the 0.50 mol dm⁻³ ethanoic acid solution before the titration starts. Refer to page 18 of the data booklet.

(2)

(1)

(iii) Deduce the volume of sodium hydroxide solution required to reach the end point.

(1)

(iv) Calculate the pH of the solution after all of the sodium hydroxide is added.

(4)

P 3 9 3 0 8 A 0 1 0 2 4

(v) On the axes below sketch a graph to show how the pH changes during the titration.

(3)

Volume of sodium hydroxide / $\rm cm^3$

Turn over

(b) An acidic buffer solution ca	in be made by	[,] mixing	together a	solution	of ethanoic	acid
and solid sodium ethanoate	,					

(i) Calculate the mass of solid sodium ethanoate (molar mass = 82 g mol⁻¹) that would be added to 500 cm³ of ethanoic acid, concentration 1.0 mol dm⁻³, in order to make a buffer solution of pH = 4.70.

(4)

*(ii) Explain how this buffer solution resists a change in pH when a few drops of sodium hydroxide are added.

(Total for Question 14 = 18 marks)

(-) $(-)$ $(-)$		
(a) Give the systematic name for melona	al.	(2)
(b) (i) Melonal can be prepared by the formula of compound X and the oxidize X.		
Compound X		
Reagents needed for oxidation		
(ii) Briefly suggest a practical meas Justify your answer.	ure to maximise the yie	ld of melonal in (b)(i). (2)
(c) Infrared spectra can be used to confir molecule. Use page 5 of the data bo and the identity of the bonds respons functional groups in melonal.	oklet to suggest the pos	ition of two absorptions
Wavenumber range / cm ⁻¹	Bond	Functional group present in melonal

(d) The mass spectrum of melonal shows small peaks at m/e = 57 and m/e = 83.

Give the formula of each of the fragments most likely to have caused these peaks.

m/e = 57......m/e = 83.....

(2)

(1)

(1)

(e) (i) On the displayed formula below, circle the hydrogen atom that has a triplet peak in the proton nmr spectrum of melonal.

(ii) On the displayed formula below, circle the atom that gives rise to a peak at a chemical shift of $\delta = 9.65$ ppm in the proton nmr spectrum of melonal. Refer to page 7 of the data booklet.

- (f) Aldehydes react with HCN in the presence of CN^{-} ions.
 - (i) Give the mechanism for this reaction, using the simplified displayed formula below.

(3)

Η =O (ii) The product of this reaction has a chiral centre. Would you expect the reaction to produce a solution that rotates the plane of plane-polarized light? Explain your answer. (3) (Total for Question 15 = 19 marks)

16 Iodine reacts with propanone in the presence of an acid catalyst.

 $CH_3COCH_3(aq) + I_2(aq) \rightarrow CH_3COCH_2I(aq) + HI(aq)$

An experiment was carried out to investigate the kinetics of this reaction by monitoring the concentration of iodine. The progress of the reaction was followed by mixing together the reagents, removing samples of the mixture every five minutes, quenching the reaction and then titrating to find the concentration of iodine at a given time.

(a) (i) Suggest a suitable reagent with which you could titrate the iodine.

(1)

(2)

(ii) State and explain how you would quench the reaction.

(b) (i) Data obtained from the experiment are shown in the table below. Use the data to plot a suitable graph to determine the order of the reaction with respect to iodine and state this order.

(3)

Time / mins	$[I_2(aq)] / mol dm^{-3}$
5	$9.74 imes 10^{-4}$
10	$9.50 imes 10^{-4}$
15	9.25×10^{-4}
20	9.03×10^{-4}
25	$8.80 imes 10^{-4}$
30	8.55×10^{-4}

P 3 9 3 0 8 A 0 1 7 2 4

(ii) Explain how you determined the order using your graph.	(2)
(c) State an alternative practical procedure that could be used to monitor the concentration of iodine.	(1)
(Total for Question 16 =	9 marks)

17 The ester CH ₃ CH ₂ COOCH ₃ can be formed from the reaction between propanoic acid and methanol with an acid catalyst.	
$\mathrm{CH_3CH_2COOH} + \mathrm{CH_3OH} \rightleftharpoons \mathrm{CH_3CH_2COOCH_3} + \mathrm{H_2O}$	
(a) (i) Name the ester.	(1)
(ii) The same product can be made using propanoyl chloride instead of propanoic acid. Suggest an additional hazard that could occur using this reagent and describe how you would minimise this risk.	(2)
$\begin{array}{ $	19 Turn over

(b) Complete the table below to show the amounts of each substance present at equilibrium. Use your values to calculate the equilibrium constant, K_c , for the reaction.

(3)

	CH ₃ CH ₂ COOH	CH ₃ OH	CH ₃ CH ₂ COOCH ₃	H ₂ O
Initial amounts / mol	0.52	0.37	0	1.2
Equilibrium amounts / mol			0.21	

(Total for Question 17 = 6 marks)

TOTAL FOR SECTION B = 52 MARKS

(ii)	Apply Hess's Law to obtain an expression for ΔH_{sol} in terms of ΔH_1 and ΔH_2 . $\Delta H_{sol} =$	(1)
(iii)	Give the name of the energy change ΔH_1 .	(1)
(iv)	Referring to page 12 of the data booklet and your answer to (ii), calculate the standard enthalpy of solution of potassium fluoride.	(2)
(c) The (i)	e standard enthalpy of solution of sodium chloride is $+ 3 \text{ kJ mol}^{-1}$. 1 g of sodium chloride was added to 250 cm ³ of water in a beaker and stirred	
	with a thermometer graduated in intervals of 1 °C. Describe and explain what would happen to the reading on the thermometer as the sodium chloride dissolves. No calculation is required.	(3)
22		

P 3 9 3 0 8 A 0 2 2 2 4

*(ii) Explain, in terms of entropy changes, why sodium chloride dissolves in water under standard conditions. No calculation is required. (4) *(d) Lithium iodide is generally much more soluble in organic solvents than lithium chloride. Explain this observation using values of lattice energies from your data booklet and your knowledge of the trend in ionic radii down Group 7. (4) (Total for Question 18 = 18 marks) **TOTAL FOR SECTION C = 18 MARKS TOTAL FOR PAPER = 90 MARKS**

3 4 5 6 7 0 (8) (13) (14) (15) (16) (17) 2 (13) (14) (15) (16) (17) 2 2 (13) (14) (15) (16) (17) 2 2 (13) (14) (15) (16) (17) 2 2 (13) (14) (15) (16) 17) 2 2 (13) (14) (15) (10) 20.2 2 3	CfEsFmMdNoLrcaliforniumeinsteiniumfermiummendeleviumnobeliumlawrencium9899100101102103
3 4 5 6 (13) (14) (15) (16) (13) (14) (15) (16) bron 12.0 14.0 16.0 bron carbon nitrogen oxygen bron 13 14 15 16 Al Si 7 8 5 atuminium silicon phosphorus sulfur 13 14 15 16 Al Si As 5 atuminium silicon arsenic sulfur 31 32 33 34 114.8 118.7 121.8 127.6 Indium Si 72.6 As 52 204.4 207.2 209.0 [209] 114 18.7 114 127.6 Inditium silitum </td <td>Fm Md No fermium mendetexium nobelium 100 101 102</td>	Fm Md No fermium mendetexium nobelium 100 101 102
3 4 5 3 4 5 (13) (14) (15) (13) (14) (15) 10.8 12.0 14.0 B C N boron carbon nitrogen 5 6 7 31.0 Al 51 69.7 72.6 74.9 Ga Ga Ge As aluminium silicon phosphorus 13 14 15 Al 51 72.6 Al 53 33 aluminium silicon phosphorus 13 14 15 69.7 72.6 74.9 Ga Ge As aluminium arsenic 33 31 32 33 33 33 33 114.8 118.7 121.8 Indium 50 51 full 50 51 full 132 209.0 full 114.8 118.7 114.8 118.7 121.8 hiddium 50 51 full 50 69 61 <td>Fm Md fermium mendelevium 100 101</td>	Fm Md fermium mendelevium 100 101
3 4 3 4 (13) (14) 10.8 12.0 boron 5 6 5 6 5 10.8 12.0 atuminium 12.0 atuminium 12.0 atuminium 12.0 atuminium 13.1 13 14 69.7 72.6 Ga Ga galtium germanium 31 32 114.8 118.7 114.8 118.7 In 32 atual 33 31 32 31 32 144 207.2 TI Pb thattium tin 81 82 hot not fuu erbium but not fuu erbium 67 68 67 68 67 68	Fm fermium 100
3 3 10.8 10.8 boron 5 5 5 5 5 69.7 69.7 69.7 69.7 31 13 13 13 14.8 9 31 114.8 13 13 14.9 9 14.9 14 165 165 165 165	
	Cf Itfornium 98
ents (12) (12) (12) (12) 2n 2n 30 30 (112.4 48 48 48 200.6 Hg mercury 80 80 163 163 [163]	g
Elem (11) (11) (11) (11) (11) (11) (11) (11)	BK berketium 97
	arrium 96
C Tab (9) (9) (9) (9) (9) (9) (9) (9) (9) (9)	Am americium 95
The Periodi mass bol 1.0 mass bol 1.0 mass bol 1.0 mumber 6 7 (6) 7 8 52.0 54.9 55.8 Cr Mn Fe chromium maganese ion 24 25 26 95.9 1981 101.1 Mo Tc Ru motydenum 4.3 4.4 Mo 17 190.2 V Re 05 183.8 186.2 190.2 V Re 05 tungsten rhenium osmium 13.8 186.2 190.2 74 75 76 106 107 108 106 107 108 106 107 108 neodynium ponrium samarium neodynium samarium samarium 106 61 62	Np Pu neptunium plutonium 93 94
The Pel Key The Pel ve atomic mass we atomic mass mame (proton) number (proton) number (proton) numbe	Np neptunium 93
	U uranium 92
	Pa protactinium 91
	thorium 90
(3) (3) (3) (3) (45.0 Sc scandium 21 88.9 Yctrium 33 138.9 La* lanthanum 39 138.9 La* actinium 88 9 88.9 kes	
1 2 1 2 6.9 9.0 6.9 9.0 6.9 9.0 6.9 9.0 1 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12 20 25 56 55 56 55 56 55 56 87 88 88 88 * Actinide series	
1 (1) (1) 6.9 6.9 6.9 6.9 11 3 39.1 7 39.1 11 39.1 7 11 39.1 7 123.0 85.5 85.5 85.5 85.5 85.5 7 132.9 6.9 132.9 6.5 7 7 132.9 8 8 7 132.9 8 87.5 8 7 132.9 8 8 7 132.9 8 8 8 * Actin * Actin	

