$A Q A=$

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s)
Candidate signature
I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Monday 8 June 2020

Afternoon
Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.
\qquad

Answer all questions in the spaces provided.

| $\mathbf{0}$ | 1 |
| :--- | :--- | This question is about rates of reaction.

Phosphinate ions $\left(\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right)$react with hydroxide ions to produce hydrogen gas as shown.

$$
\mathrm{H}_{2} \mathrm{PO}_{2}^{-}+\mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{3}{ }^{2-}+\mathrm{H}_{2}
$$

A student completed an experiment to determine the initial rate of this reaction.
The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.
Figure 1 shows a graph of the student's results.
Figure 1

$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$ State its units. Show your working on the graph.
\qquad Units \qquad

| 0 | 1 | .2 |
| :--- | :--- | :--- | Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (t) taken to collect $15 \mathrm{~cm}^{3}$ of hydrogen gas. Each experiment was carried out at the same temperature. Table 1 shows the results.

Table 1

Initial $\left[\mathbf{H}_{2} \mathrm{PO}_{\mathbf{2}}{ }^{-}\right] / \mathrm{mol} \mathrm{dm}^{\mathbf{3}}$	$\boldsymbol{t} / \mathbf{s}$
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).
Deduce the order of the reaction with respect to phosphinate.

Relationship \qquad
Order \qquad

Question 1 continues on the next page

| 0 | 1 | 3 | 3 |
| :--- | :--- | :--- | :--- | and measured in the experiments in Questions 01.1 and 01.2.

Figure 2

The rate equation for a different reaction is

$$
\text { rate }=k[\mathrm{~L}][\mathrm{M}]^{2}
$$

$\mathbf{0}$	$\mathbf{1}$.4
$\mathbf{4}$	Deduce the overall effect on the rate of reaction when the concentrations of both	

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{1} .5$	$\begin{array}{l}\text { The rate of reaction is } 0.0250 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \text { when the } \\ \text { concentration of } \mathrm{L} \text { is } 0.0155 \mathrm{~mol} \mathrm{dm}^{-3}\end{array}$
Calculate the concentration of \mathbf{M} if the rate constant is $21.3 \mathrm{~mol}^{-2} \mathrm{dm}^{6} \mathrm{~s}^{-1}$		

0	1	6

\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 2 |
| :--- | :--- |\quad Prilocaine is used as an anaesthetic in dentistry.

Figure 3 shows the structure of prilocaine.
Figure 3

0	2	1

0	2	2
2		

Tick (\checkmark) the box(es) corresponding to the functional group(s).

Amide	Amine	Ester	Ketone

$\begin{array}{llll}\mathbf{0} & \mathbf{2} . & 3 & \text { Prilocaine is completely hydrolysed in the human body to give a mixture of products. }\end{array}$
Draw the structures of the two organic products formed in the complete hydrolysis of prilocaine in acidic conditions.

| 0 | 2 | 4 |
| :--- | :--- | :--- | Figure $\mathbf{4}$ shows optical isomers \mathbf{F} and \mathbf{G}.

Figure 4

Isomer F

Isomer G

Isomer \mathbf{F} is the active compound in the medicine ibuprofen.
In the manufacture of ibuprofen both isomers \mathbf{F} and \mathbf{G} are formed. An enzyme is then used to bind to isomer \mathbf{G} and catalyse its hydrolysis.

After the products of hydrolysis of \mathbf{G} are removed, a pure sample of isomer \mathbf{F} is collected.

Explain how a structural feature of this enzyme enables it to catalyse the hydrolysis of isomer \mathbf{G} but not the hydrolysis of isomer \mathbf{F}.
[2 marks]
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | $\mathbf{3}$ | $\mathbf{1}$ Identify the isomer(s) that would react when warmed with |
| :--- | :--- | :--- | acidified potassium dichromate(VI).

State the expected observation when acidified potassium dichromate(VI) reacts.

Isomer(s)
Expected observation \qquad

U

0	3	2

State the expected observation when Tollens' reagent reacts.

Isomer(s)
Expected observation \qquad
\qquad

| 0 | $\mathbf{3}$ | $\mathbf{3}$ Separate samples of each isomer are warmed with ethanoic acid and a few drops of |
| :--- | :--- | :--- | :--- | concentrated sulfuric acid. In each case the mixture is then poured into a solution of sodium hydrogencarbonate.

Identify the isomer(s) that would react with ethanoic acid.
Suggest a simple way to detect if the ethanoic acid reacts with each isomer.
Give a reason why the mixture is poured into sodium hydrogencarbonate solution.

Isomer(s)
Suggestion \qquad
\qquad
\qquad
Reason \qquad

$\mathbf{0}$	$\mathbf{3} .4$	$\mathbf{4}$ State the type of structural isomerism shown by isomers $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}.

| 0 | 3 | 5 |
| :--- | :--- | :--- | isomers \mathbf{R}, \mathbf{S} and \mathbf{T}.

Use data from Table A in the Data Booklet in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| 0 | $\mathbf{3} .6$ | 6 |
| :--- | :--- | :--- | distinguish between the isomers.

| 0 | 4 | Aspirin can be produced by reacting salicylic acid with ethanoic anhydride. |
| :--- | :--- | :--- | An incomplete method to determine the yield of aspirin is shown.

1. Add about 6 g of salicylic acid to a weighing boat.
2. Place the weighing boat on a 2 decimal place balance and record the mass.
3. Tip the salicylic acid into a $100 \mathrm{~cm}^{3}$ conical flask.
4. \qquad
5. Add $10 \mathrm{~cm}^{3}$ of ethanoic anhydride to the conical flask and swirl.
6. Add 5 drops of concentrated phosphoric acid.
7. Warm the flask for 20 minutes.
8. Add ice-cold water to the reaction mixture and place the flask in an ice bath.
9. Filter off the crude aspirin from the mixture and leave it to dry.
10. Weigh the crude aspirin and calculate the yield.

Justify why this step is necessary.

Instruction \qquad
Justification \qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4} .2$ | Suggest a suitable piece of apparatus to measure out the ethanoic anhydride in |
| :--- | :--- | :--- | step 5.

\qquad

0	4	3

\qquad

| 0 | $\mathbf{4}$ | .4 Complete the equation for the reaction of salicylic acid with ethanoic anhydride to |
| :--- | :--- | :--- | produce aspirin.

Salicylic acid

Aspirin

0	4	5

$10.5 \mathrm{~cm}^{3}$ of ethanoic anhydride ($M_{\mathrm{r}}=102.0$).
In the reaction the yield of aspirin is 84.1%
The density of ethanoic anhydride is $1.08 \mathrm{~g} \mathrm{~cm}^{-3}$
Show by calculation which reagent is in excess.
Calculate the mass, in g , of aspirin ($M_{\mathrm{r}}=180.0$) produced.
\qquad

| 0 | $\mathbf{4}$ | 6 | Suggest two ways in which the melting point of the crude aspirin collected in step 9 |
| :--- | :--- | :--- | :--- | would differ from the melting point of pure aspirin.

Difference 1
\qquad
Difference 2
-
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{4}$. | $\mathbf{7}$ | The crude aspirin can be purified by recrystallisation using |
| :--- | :--- | :--- | :--- | hot ethanol (boiling point $=78^{\circ} \mathrm{C}$) as the solvent.

Describe two important precautions when heating the mixture of ethanol and crude aspirin.

Precaution 1 \qquad
\qquad
Precaution 2 \qquad
\qquad

0	$\mathbf{4}$.8

A small amount of cold ethanol is then poured through the Buchner funnel.
Explain the purpose of adding a small amount of cold ethanol.
\qquad
\qquad
\qquad

0	$\mathbf{4}$	$\mathbf{9}$ A sample of the crude aspirin is kept to compare with the purified aspirin.

Describe one difference in appearance you would expect to see between these two solid samples.
\qquad
\qquad
\qquad
Turn over for the next question Turn over

0	5	This question is about 2-bromopropane.	
0	5	Define the term electronegativity.	
		Explain the polarity of the $\mathrm{C}-\mathrm{Br}$ bond in 2-bromopropane.	[3 marks]
		Electronegativity	

\qquad
Explanation
\qquad
\qquad

| 0 | 5 | 2 |
| :--- | :--- | :--- | excess of ammonia.

| $\mathbf{0}$ | $\mathbf{5} .3$ Draw the skeletal formula of the main organic species formed in the reaction between |
| :--- | :--- | :--- | :--- | a large excess of 2-bromopropane and ammonia.

Give a use for the organic product.

Skeletal formula

Use

Turn over for the next question

| $\mathbf{0}$ | $\mathbf{6}$ Polystyrene can be made from benzene in the series of steps shown. |
| :--- | :--- | :--- |

$\mathbf{0}$	$\mathbf{6}$.	$\mathbf{1}$

Identify the reagent(s) and conditions needed for step 1.

Type of reaction \qquad
Reagent(s) \qquad
Conditions \qquad

| $\mathbf{0}$ | $\mathbf{6} .2$ | $\mathbf{2}$ State the name of the mechanism for the reaction in step 2. |
| :--- | :--- | :--- | :--- |

Identify the inorganic reagent needed for step 2.
Name the organic product of step 2.

Name of mechanism \qquad
Inorganic reagent \qquad
Name of organic product \qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{3}$ The organic product of step $\mathbf{2}$ is reacted with concentrated sulfuric acid in step $\mathbf{3}$. |
| :--- | :--- | :--- | :--- | Outline the mechanism for step 3.

$\begin{array}{llll}0 & 6 & 4 & \text { Draw the repeating unit of polystyrene. }\end{array}$

$\mathbf{0}$	$\mathbf{7} \quad$ This question is about NMR spectroscopy.

| $\mathbf{0}$ | $\mathbf{7} .1$ | A compound is usually mixed with $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ and either CCl_{4} or CDCl_{3} before recording |
| :--- | :--- | :--- | the compound's ${ }^{1} \mathrm{H}$ NMR spectrum.

State why $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}, \mathrm{CCl}_{4}$ and CDCl_{3} are used in ${ }^{1} \mathrm{H}$ NMR spectroscopy.
Explain how their properties make them suitable for use in ${ }^{1} \mathrm{H}$ NMR spectroscopy.
\qquad

| $\mathbf{0}$ | $\mathbf{7}$. | $\mathbf{2}$ Deduce the splitting pattern for each of the peaks given by the H atoms labelled |
| :--- | :--- | :--- | $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound shown.

$\underset{\mathrm{CH}_{3} \mathrm{CHClCOCH}\left(\mathrm{CH}_{3}\right)_{2}}{\boldsymbol{x}}$
x \qquad
y \qquad
z \qquad

| 0 | $\mathbf{7}$. | 3 | Suggest why it is difficult to use Table B in the Data Booklet to predict the |
| :--- | :--- | :--- | :--- | chemical shift (δ value) for the peak given by the H atom labelled \boldsymbol{y}.

\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7} .4$ | Two isomers of $\mathrm{CH}_{3} \mathrm{CHClCOCH}\left(\mathrm{CH}_{3}\right)_{2}$ each have two singlet peaks only in their |
| :--- | :--- | :--- | ${ }^{1} \mathrm{H}$ NMR spectra.

In both spectra the integration ratio for the two peaks is 2:9
Deduce the structures of these two isomers.

Isomer 1

Isomer 2

| 0 | 8 |
| :--- | :--- | represented as $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}$

$\mathbf{0}$	$\mathbf{8} .1$	A 1.50 g sample of $\mathrm{H}_{3} \mathrm{Y} . x \mathrm{H}_{2} \mathrm{O}$ contains 0.913 g of oxygen by mass. ${ }^{2}$.

The sample burns completely in air to form 1.89 g of CO_{2} and 0.643 g of $\mathrm{H}_{2} \mathrm{O}$
Show that the empirical formula of citric acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}$
 The anhydrous $\mathrm{H}_{3} \mathrm{Y}$ that remains has a mass of 2.74 g

Show, using these data, that the value of $x=1$

Figure 5

0	8	3

propane-1, 2, 3-tricarboxylic acid

0	8	4	State the number of peaks you would expect in the ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathrm{H}_{3} \mathrm{Y}$

$\mathbf{0}$	$\mathbf{9}$
\mathbf{A} and \mathbf{B} react together to form an equilibrium mixture..$~$	

$$
\mathrm{A}(\mathrm{aq})+2 \mathrm{~B}(\mathrm{aq}) \rightleftharpoons \mathrm{C}(\mathrm{aq})
$$

An aqueous solution containing 0.25 mol of \mathbf{A} is added to an aqueous solution containing 0.25 mol of \mathbf{B}.

When equilibrium is reached, the mixture contains 0.015 mol of \mathbf{C}.

\qquad mol

Amount of B \qquad mol
$\left.\begin{array}{l|l|l|l}\mathbf{0} & \mathbf{9} & 2 & 2\end{array}\right)$ At a different temperature, another equilibrium mixture contains 0.30 mol of \mathbf{A}, 0.25 mol of \mathbf{B} and 0.020 mol of \mathbf{C} in $350 \mathrm{~cm}^{3}$ of solution.

Calculate the value of the equilibrium constant K_{c}
Deduce the units of K_{c}
K_{c} \qquad
Units \qquad

When an excess of water is added to chloroethanal, an equilibrium mixture is formed.

$$
\mathrm{ClCH}_{2} \mathrm{CHO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}(\mathrm{aq})
$$

An expression for an equilibrium constant (K) for the reaction under these conditions is

$$
K=\frac{\left[\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{CHO}\right]}
$$

\qquad
\qquad
\qquad
 solution. The mixture is allowed to reach equilibrium.

The value of the equilibrium constant (K) is 37.0
Calculate the equilibrium concentration, in $\mathrm{mol} \mathrm{dm}^{-3}$, of $\mathrm{ClCH}_{2} \mathrm{CH}(\mathrm{OH})_{2}$
\qquad $\mathrm{mol} \mathrm{dm}^{-3}$

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ Figure $\mathbf{6}$ shows an incomplete nucleophilic addition mechanism for the reaction of |
| :--- | :--- | :--- | :--- | water with chloroethanal.

Figure 6

Complete the mechanism in Figure 6 by adding two curly arrows, all relevant charges and any lone pairs of electrons involved.

| $\mathbf{0}$ | $\mathbf{9}$. | 6 |
| :--- | :--- | :--- | When an excess of water is added to ethanal a similar nucleophilic addition reaction occurs.

$$
\mathrm{CH}_{3} \mathrm{CHO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})_{2}(\mathrm{aq})
$$

Suggest why this reaction is slower than the reaction in Question 09.5.
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, all acknowledgements of third - party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the

Copyright © 2020 AQA and its licensors. All rights reserved

