Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

General Certificate of Education Advanced Level Examination June 2012

Physics A

PHYA5/2D

Unit 5D Turning Points in Physics Section B

Monday 18 June 2012 9.00 am to 10.45 am

For this paper you must have:

- a calculator
- a ruler
- a Data and Formulae Booklet (enclosed).

Time allowed

• The total time for both sections of this paper is 1 hour 45 minutes. You are advised to spend approximately 50 minutes on this section.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this section is 35.
- You are expected to use a calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.
- You will be marked on your ability to:
 - use good English
 - organise information clearly
 - use specialist vocabulary where appropriate.

For Examiner's Use

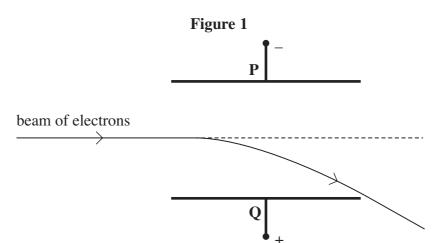
Examiner's Initials

Mark

Question

2

3


4

TOTAL

Section B

The maximum mark for this section is 35 marks. You are advised to spend approximately 50 minutes on this section.

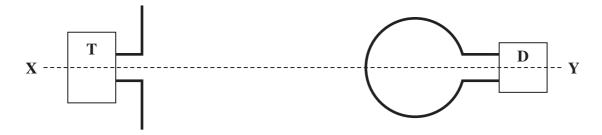
A narrow beam of electrons is directed into the region between two parallel plates, **P** and **Q**. When a constant potential difference is applied between the two plates, the beam curves downwards towards plate **Q** as shown in **Figure 1**.

1 (a)	Explain why the beam curves downwards at an increasing angle to its initial direction.
	(3 marks)
1 (b)	A uniform magnetic field is then applied at right angles to both the beam and the electric field between the plates \mathbf{P} and \mathbf{Q} . As a result, the downward deflection of the beam is increased.
1 (b) (i)	The arrangement is to be used to determine the speed of the electrons in the beam. Describe what adjustments to the flux density B of the magnetic field should be made to reduce the deflection of the beam to zero.
	(1 mark)

1 (b) (ii)	Explain why the electrons pass undeflected through the fields when their speed v is given by
	$v = \frac{V}{Bd}$
	where V is the potential difference between plates \mathbf{P} and \mathbf{Q} and d is the perpendicular distance between the plates.
	(2 marks)
1 (c)	The beam of electrons was produced by thermionic emission from a heated filament. When the potential difference between the anode and the filament was 4200 V, the speed of the electrons in the beam was 3.9×10^7 m s ⁻¹ .
	Use this information to determine the specific charge of the electron.

Turn over ▶

9



2 (a)	Describe, in terms of electric and magnetic fields, a plane polarised electromagnetic wave travelling in a vacuum. You may wish to draw a labelled diagram.
	(3 marks)
2 (b)	In his theory of electromagnetic waves, Maxwell predicted that the speed of all
	electromagnetic waves travelling through free space is given by
	electromagnetic waves travelling through free space is given by $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
	$c = \frac{1}{\sqrt{\mu_o \varepsilon_o}}$ where μ_o is the permeability of free space and ε_o is the permittivity of free space. Explain why this prediction led to the conclusion that light waves are electromagnetic
	$c = \frac{1}{\sqrt{\mu_o \varepsilon_o}}$ where μ_o is the permeability of free space and ε_o is the permittivity of free space. Explain why this prediction led to the conclusion that light waves are electromagnetic
	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ where μ_0 is the permeability of free space and ε_0 is the permittivity of free space. Explain why this prediction led to the conclusion that light waves are electromagnetic waves.
	$c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}$ where μ_0 is the permeability of free space and ε_0 is the permittivity of free space. Explain why this prediction led to the conclusion that light waves are electromagnetic waves.
	$c=\frac{1}{\sqrt{\mu_0\varepsilon_0}}$ where μ_0 is the permeability of free space and ε_0 is the permittivity of free space. Explain why this prediction led to the conclusion that light waves are electromagnetic waves.

2 (c) Hertz discovered how to produce and detect radio waves. Figure 2 shows a transmitter of radio waves, T, and a detector D. The detector loop and the transmitter aerial are in the same vertical plane.

Figure 2

2 (c) (i)	Explain why an alternating emf is induced in the loop when it is in this position.
	(3 marks)
2 (c) (ii)	Explain why an alternating emf cannot be detected if the detector loop is turned through 90° about the axis XY .
	(1 mark)

9

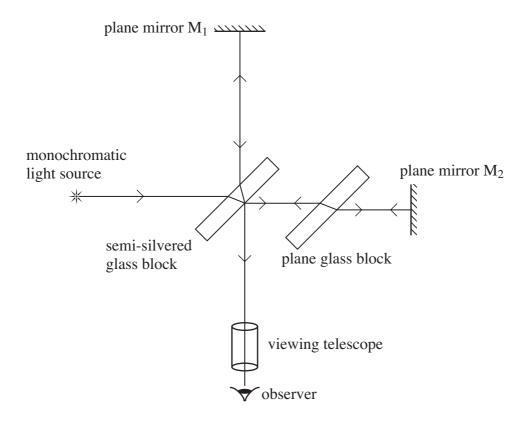
Turn over ▶

3 (a)	Light has a dual wave-particle nature. State and outline a piece of evidence for the wave nature of light and a piece of evidence for its particle nature. For each piece of evidence, outline a characteristic feature that has been observed or measured and give a short explanation of its relevance to your answer. Details of experiments are not required.
	The quality of your written communication will be assessed in your answer.
	(6 marks)

3 (b)	An electron is travelling at a speed of $0.890 c$ where c is the speed of light in free space.
3 (b) (i)	Show that the electron has a de Broglie wavelength of $1.24\times10^{-12}\mathrm{m}$.
3 (b) (ii)	Calculate the energy of a photon of wavelength $1.24 \times 10^{-12}\text{m}$.
3 (b) (iii)	Calculate the kinetic energy of an electron with a de Broglie wavelength of $1.24\times10^{-12}\mathrm{m}$. Give your answer to an appropriate number of significant figures.

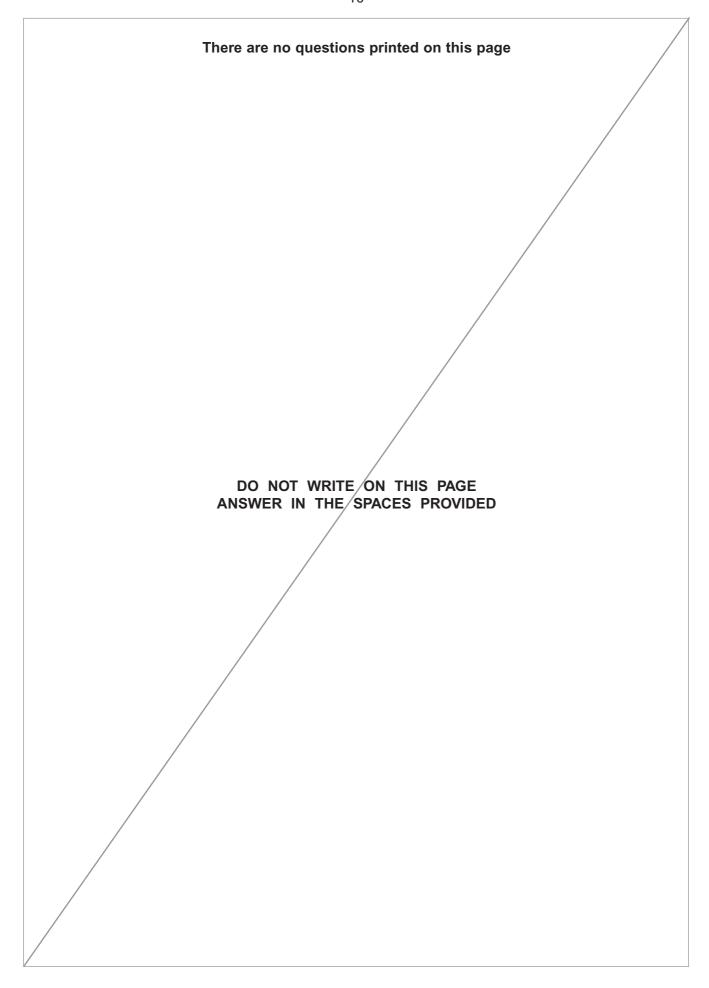
Turn over ▶

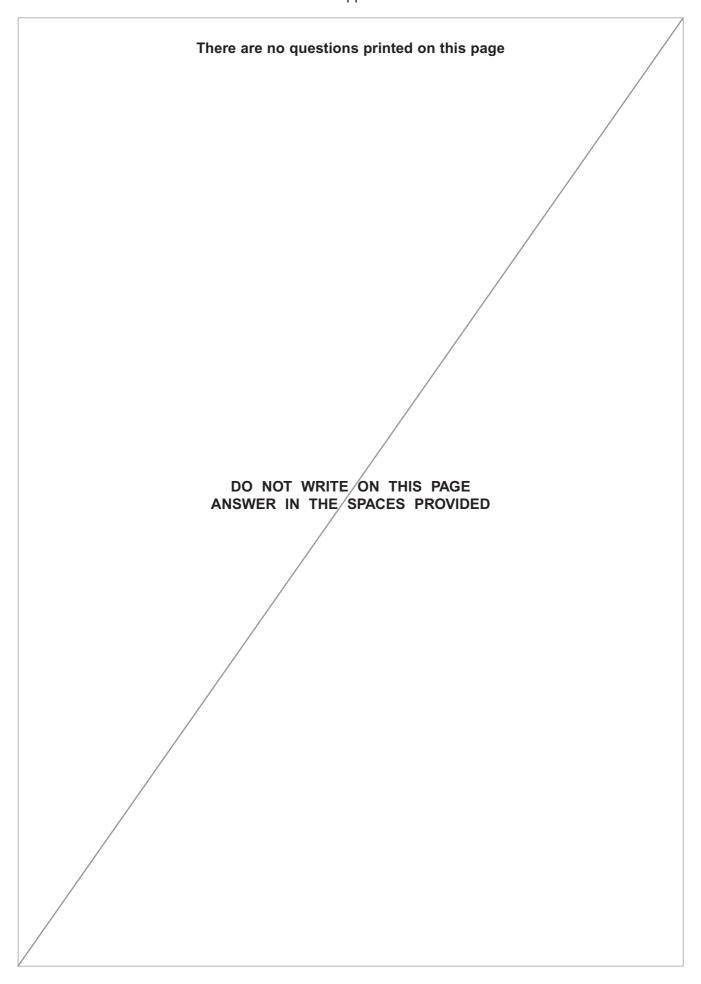
11


(2 marks)

answer = J

Figure 3 represents the Michelson-Morley interferometer. Interference fringes are seen by an observer looking through the viewing telescope.


Figure 3


4 (a)	two mirrors to the semi-silvered block is changed.
	(2 marks)
	(2 marks

4 (b)	Michelson and Morley predicted that the interference fringes would shift when the apparatus was rotated through 90°. When they tested their prediction, no such fringe shift was observed.
4 (b) (i)	Why was it predicted that a shift of the fringes would be observed?
	(3 marks)
4 (b) (ii)	What conclusion was drawn from the observation that the fringes did not shift?
	(1 mark)
	END OF QUESTIONS

