Oxford Cambridge and RSA

GCE

Chemistry B (Salters)

Unit F334: Chemistry of Materials
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1 Annotations: the following annotations are available on RM ASSESSOR.

Annotation	Meaning
800	Benefit of doubt given
CON	Contradiction
3	Incorrect response
ELF	Error carried forward
TE	Transcription error
MBOD	Benefit of doubt not given
POT	Power of 10 error
A	Omission mark
SF	Error in number of significant figures
*	Correct response
2	Wrong physics or equation

Question			Expected Answers	Marks	Additional Guidance
1	a		Is it safe? AW Does it work? AW Is it better than the standard treatment? AW ALL correct $\checkmark \checkmark$ Any TWO correct \checkmark	2	ALLOW Can it be formulated correctly (for skin application)? ALLOW reference to cost effectiveness
	b	i	alkene / carbon-carbon double bond ester hydroxyl / (secondary) alcohol ALL correct $\checkmark \checkmark$ Any TWO correct \checkmark	2	DO NOT ALLOW ‘double bond’ alone primary is a CON
	b	ii	ANY FOUR ALL correct \checkmark	1	If more than 4 circled - all must be correct
	b	iii	EITHER: YES, because: 3 electron clouds/densities/groups (around C) \checkmark these repel \checkmark as far (apart) as possible OR NO because: 3 electron clouds/densities/groups (around C) \checkmark $\mathrm{C}=\mathrm{C} /$ double bond repels more than $\mathrm{C}-\mathrm{H} /$ single bond \checkmark so bond angle will be less/reduced/smaller (between the single bonds)	3	ALLOW '3 regions of negative charge' In YES response ALLOW $2^{\text {nd }}$ and $3^{\text {rd }}$ marks for 'position themselves to minimise repulsion' IGNORE 'as much as possible' DO NOT ALLOW 'bonds repel' Double bonds repel less than single bonds followed by angle will be greater scores $3^{\text {rd }}$ mark ecf. 'Bonds repel differently so angles are different' MAX 2 Failure to categorically agree or disagree -2 marks

Question			Expected Answers	Marks	Additional Guidance
					max
	b	iv	It gives an accurate value of molecular ion peak AW \checkmark use accurate (atomic) masses (to at least 4 decimal places) for the constituent atoms AW \checkmark different compounds have different accurate M_{r} values \checkmark	3	No credit for fragmentation
1	c		with Pd H_{2} adds on to the terminal $\mathrm{C}=\mathrm{C} \checkmark$ forming structure $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C H C H}_{2}-\right)$ in which neither carbon is asymmetric AW \checkmark with Pt H_{2} also adds on to the $\mathrm{C}=\mathrm{C}$ bonded to COOH group \checkmark forming structure $\left(\mathrm{R}_{1}(\mathrm{COOH}) \mathrm{CHCHR} \mathrm{R}_{2} \mathrm{R}_{3^{-}}\right)$where both carbons are now asymmetric AW \checkmark	4	ALLOW any unambiguous identification of the two double bonds For $2^{\text {nd }}$ mark in each pair ALLOW description of asymmetry instead of the word itself 'One H_{2} with Pd and a second with Pt across $\mathrm{C}=\mathrm{C}$ bonds' scores 1 mark
	d	i		1	ALLOW EITHER C-O in $\mathrm{O}-\mathrm{C}=\mathrm{O}$ (as shown and correct) OR C-O to main part of structure Any label must point to the bond and not the atom
	d	ii	ethanoic acid because M_{r} / molecular ion peak is $60 \checkmark$ hydrolysis of ester forms acid \checkmark (broad) peak at (any value between) 2500-3300 in spectrum indicates O-H in carboxylic acid \checkmark (strong) peak at (any value between)1700-1730 in spectrum indicates $\mathrm{C}=\mathrm{O}$ in carboxylic acid \checkmark	4	QWC only award second mark if first scored ALLOW any frequency within range NOTE they must identify the two peaks on the spectrum or in response If 'in carboxylic acid' is not mentioned candidate can still score $3^{\text {rd }}$ marking point if BOTH peaks identified
			Total	20	

Question			Expected Answers	Marks	Additional Guidance
2	a	i	$\mathrm{Cl}^{+++}{ }_{\square}^{+}$ bent AND 2 bonds and 1 lone pair around central (N) atom \checkmark	2	Shared electrons must be two different symbols ALLOW 'bent AND 3 groups of electrons around central (N) atom' ECF from incorrect dot and cross diagram
	a	ii	N in CINO has oxidation state of +3 AND N in NO has oxidation state of $+2 \checkmark$ (oxidation state decreases so) it has been reduced whilst oxidising \checkmark	2	Check stem of question to see if +3 and +2 have been written against formulae.
	b	i	Chlorine is a yellow-green gas \checkmark colour change will be difficult to measure/detect/see AW \checkmark	2	ALLOW argument based on the decrease in colour of chlorine masking the increase in colour of CINO
	b	ii	$\begin{aligned} & \text { rate }=\mathrm{k} \times[\mathrm{NO}]^{2} \times\left[\mathrm{Cl}_{2}\right] \\ & \text { From expt. } 1:\left(2.06 \times 10^{-7}=\mathrm{k} \times(0.15)^{2} \times(0.10)\right) \text { so } \mathrm{k}=9.2 \times 10^{-5} \\ & \checkmark \\ & \text { units: } \mathrm{mol}^{-2} \mathrm{dm}^{(+) 6} \mathrm{~s}^{-1} \checkmark \\ & \text { rate }=\left(9.2 \times 10^{-5} \times(0.1)^{2} \times 0.10\right)=9.2 \times 10^{-8} \checkmark \\ & \text { both } \mathrm{k} \text { and rate given to } 2 \text { s.f. } \checkmark \end{aligned}$	5	ALLOW ecf from rate equation ALLOW ecf from $2^{\text {nd }}$ to $4^{\text {th }}$ marking point NOTE Expts. 2 and 3 also give 9.2×10^{-5} and $9.2 \times$ 10^{-8} ALLOW units in any order + sign not necessary on units Final marking point for any pair of answers given to 2 s.f.
	b	iii	The rate equation (rate $=\mathrm{kx}[\mathrm{NO}]^{2} \times\left[\mathrm{Cl}_{2}\right]$) identifies the number of reacting molecules and type in the rds/slow step of the reaction EITHER therefore 2 molecules of NO and 1 molecule of Cl_{2} react in the slow step \checkmark explained by a single step mechanism (unlikely - 3 body collision) OR 2 slow steps or $1^{\text {st }}$ fast $-2^{\text {nd }}$ slow which between them involve 2 molecules of NO and one of $\mathrm{Cl}_{2} \checkmark$ given by equations eg fast or slow $\mathrm{NO}+\mathrm{Cl}_{2} \rightarrow \mathrm{NOCl}_{2}$	3	First mark for explicit link between rate equation and numbers in r.d.s ' 2 molecules of NO and 1 molecule of Cl_{2} collide in the slow step' scores $2^{\text {nd }}$ and $3^{\text {rd }}$ marking point

Question			Expected Answers		Marks	Additional Guidance
			slow $\mathrm{NOCl}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NOCl} \checkmark$			
2	c	i	${ }^{+} \mathrm{NO} \checkmark$		1	positive charge MUST be on N
	C	ii			2	ALLOW any unambiguous formulae ALLOW ecf from first part of cii only
				Total	17	

| Question | | Expected Answers | Marks | Additional Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | \mathbf{a} | i | two compounds/molecules react by addition AW \checkmark
 followed by the elimination/loss/removal of a small
 molecule/water \checkmark | $\mathbf{2}$ |

b		1 draw pencil-line near bottom of paper \checkmark 2 place (a small amount of) unknown amino acid aqueous solution (and a small amount each of aqueous alanine and valine) on the line \checkmark 3 place paper in water/solvent, line above solvent level AND add lid/cover \checkmark 4 when solvent nears top of plate (after a suitable time), remove/dry AND locate spots with ninhydrin \checkmark 5 compare heights/position/migration of spot from unknown with the 2 known amino acids OR calculate $\boldsymbol{R i}_{\mathrm{f}}$ value of spot and compare with those of alanine and valine \checkmark	5	DO NOT ALLOW TLC/silica for first marking point
c		enzymes in soil organisms can break down (secondary) amide and/or ester linkages	1	ALLOW peptide here NB '(secondary)' in brackets ALLOW named organisms or types of organism (bacteria, fungi, nematodes etc)
d	i	regular packing/alignment of polymer chains/molecules \checkmark due to regular structure of polymer AW \checkmark	2	
d	ii	valine has a longer/larger/more branched side chain/more methyl groups AND chains/molecules cannot pack/align as regularly/closely AW \checkmark	1	ALLOW reverse argument based on alanine
d	iii	(polymer with) alanine - intermolecular/interchain forces/bonds greater/stronger/more	1	ALLOW more energy required to break bonds/imf between chains

	\mathbf{d}	iv	two from the following: $\checkmark \checkmark$ cold-drawing add copolymers reduce the side groups/branches (on the monomers) introduce side groups which increase imf introduce named side groups excluding alkyl cross-linking groups (eg SH)	$\mathbf{2}$	
			Total	$\mathbf{1 9}$	

Question			Expected Answers	Marks	Additional Guidance
4	a	i	$\begin{aligned} & 4 \mathrm{Cu}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s}) \\ & 2 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{aq}) \rightarrow 4 \mathrm{CuO}(\mathrm{~s}) \\ & \text { both equations correct } \checkmark \\ & \text { state symbols correct } \checkmark \end{aligned}$	2	ALLOW multiples or halves $2^{\text {nd }}$ marking point can be scored for wrong equations but equation must be balanced
	a	ii	still water: little/no oxygen/oxygen rapidly used up AND flowing water oxygen renewed continuously AW \checkmark	1	
	a	iii	$\begin{aligned} & \text { Cu } 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1} \\ & \mathrm{Cu}^{+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}\left(4 s^{0}\right) \\ & C u^{2+} 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{9}\left(4 s^{0}\right) \\ & C u^{+} \text {AND Cu }{ }^{2+} \text { correct } \checkmark \end{aligned}$	2	NOTE 4s written before 3d MAX 1
	b	i	$\left[\mathrm{CuCl}_{4}\right]^{2-}$ ligand transfer/ ligand substitution/ligand exchange \checkmark chloride ions/ Cl^{-}replace water $/ \mathrm{H}_{2} \mathrm{O}$ around Cu^{2+} ions \checkmark	3	ALLOW ligand displacement ALLOW 'chloride ions form more stable complex than water' ALLOW 'chlorine ions replace.......' but NOT 'chlorine replaces......'
	b	ii	1 choose suitable/red filter AND zero colorimeter with water \checkmark 2 make up range of standard solutions (of $\left.\left[\mathrm{CuCl}_{4}\right]^{2-}(\mathrm{aq})\right) \checkmark$ 3 measure absorbance of standard solutions AND plot calibration curve	4	ALLOW 'make standard solutions of blue water' ALLOW transmittance QWC absorbance/transmittance must be spelt correctly once to get marking point 3

Question			Expected Answers	Marks	Additional Guidance
			4 measure absorbance of 'blue water' AND read off concentration from calibration curve		
	C		2-aminoethanol \checkmark	1	ALLOW 2-aminoethan-1-ol IGNORE hyphens, gaps, commas
	d	i	$6 \checkmark$	1	
4	d	ii	Lone pairs on N and $\mathrm{O} \checkmark$	2	ALLOW 2 lone pairs on O The rest of the diagram correct with maximum of 1 ligand shown ALLOW any representation of organic structure but extra CH_{2} groups is $\mathbf{C O N}$
		iii	dative (covalent) /co-ordinate/coordination \checkmark	1	IGNORE 'ligand'
			Total	17	

Question			Expected Answers	Marks	Additional Guidance
5	a	i	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ AND ethanedioic acid \checkmark acidic (but not so acidic as to oxidise KMnO_{4} to Mn^{2+}) \checkmark E^{\ominus} of $\mathrm{MnO}_{4} / \mathrm{MnO}_{2}$ is more positive than E^{\ominus} of $\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ ORA \checkmark so MnO_{4} can/will be reduced to $\mathrm{MnO}_{2} \mathrm{AW} \checkmark$	4	ALLOW 1,2 - ethanedioic acid IGNORE spaces NOT 'conc.' ALLOW hydrochloric/sulphuric NOT nitric E^{\ominus} of $\mathrm{CO}_{2} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is more negative (less positive) than E^{\ominus} of $\mathrm{MnO}_{4} / \mathrm{MnO}_{2}$
	a	ii	$2 \mathrm{MnO}_{4}^{-}+3 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}^{+} \rightarrow 2 \mathrm{MnO}_{2}+6 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \checkmark$	1	
	b		$\begin{aligned} & \text { moles of } \mathrm{Fe}^{2+} \text { in } 250 \mathrm{~cm}^{3}=9.80 / 392=0.0250 \checkmark \\ & {\left[\mathrm{Fe}^{2+}\right]=9.80 / 392 \times 1000 / 250=0.100 \checkmark} \\ & \text { moles of } \mathrm{Fe}^{2+} \text { used in titration }=9.80 / 392 \times 1000 / 250 \times 10 / 1000 \\ & =0.00100 \checkmark \\ & \text { moles of } \mathrm{MnO}_{4} \text { used in titration }=\mathbf{0 . 0 0 1 0 0} / \mathbf{5}=0.000200 \checkmark \\ & {\left[\mathrm{MnO}_{4}\right]=0.000200 \times 1000 / 17.50=\mathbf{0 . 0 1 1 4} \mathrm{mol} \mathrm{dm}^{-3} \checkmark} \end{aligned}$	5	Correct answer on answer line scores 5 marks Earlier marking points subsumed by later (correct) steps ALLOW ecf throughout NOTE answer to 3 sf
	C		```pipette: Mohr's solution into flask/beaker AND burette: }\mp@subsup{\textrm{MnO}}{4}{- solution \checkmark add sulfuric acid/ }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}\mathrm{ to flask } end point: first permanent/persistent pink colour }```	3	DO NOT ALLOW solutions other way round for first mark BUT ALLOW colourless / very pale yellow colour for third mark if solutions reversed
	d	i	green \checkmark precipitate/ppt./solid \checkmark	2	IGNORE shade of green
	d	ii	$\mathrm{Fe}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Fe}(\mathrm{OH})_{2} \checkmark$	1	IGNORE state symbols
	e		ammonium $/ \mathrm{NH}_{4}{ }^{+}$ions are proton donors/form H^{+}ions in water \checkmark	1	ALLOW 'are acidic in solution'
			Total	17	

OCR (Oxford Cambridge and RSA Examinations)
 1 Hills Road
 Cambridge
 CB1 2EU
 OCR Customer Contact Centre
 Education and Learning
 Telephone: 01223553998
 Facsimile: 01223552627
 Email: general.qualifications@ocr.org.uk
 www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2017

