Write your name here			
Surname		Other names	
Pearson Edexcel International GCSE	Centre Number	Candidate N	lumber
Physics Unit: 4PH0 Science (Double Av Paper: 1P	vard) 4SC0		
Thursday 11 January 2018 Time: 2 hours	– Afternoon	Paper Reference 4PH0/1P 4SC0/1P	e
You must have: Ruler, calculator, protractor			otal Marks

Instructions

- Use **black** ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided there may be more space than you need.
- Show all the steps in any calculations and state the units.
- Some questions must be answered with a cross in a box ⊠. If you change your mind about an answer, put a line through the box ⊠ and then mark your new answer with a cross ⊠

Information

- The total mark for this paper is 120.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Write your answers neatly and in good English.
- Try to answer every question.
- Check your answers if you have time at the end.

EQUATIONS

You may find the following equations useful.

energy transferred = current × voltage × time	$E = I \times V \times t$
pressure × volume = constant	$p_1 \times V_1 = p_2 \times V_2$
frequency = $\frac{1}{\text{time period}}$	$f = \frac{1}{T}$
$power = \frac{work \text{ done}}{time taken}$	$P = \frac{W}{t}$
power = $\frac{\text{energy transferred}}{\text{time taken}}$	$P = \frac{W}{t}$
orbital speed = $\frac{2\pi \times \text{orbital radius}}{\text{time period}}$	$v = \frac{2 \times \pi \times r}{T}$

Where necessary, assume the acceleration of free fall, $g = 10 \text{ m/s}^2$.

DO NOT WRITE IN THIS AREA

_

Answer ALL questions. The photograph shows solar cells on the roof of a house. 1 (a) State the energy transfer taking place in the solar cells. (2) (b) The solar cells generate a current of 2.3 A. (i) State the equation linking charge, current and time. (1) (ii) Calculate the charge transferred by the solar cells in 15 seconds. (2) charge transferred = _____C (c) The solar cells are wired in parallel. Suggest why the solar cells are not connected in series. (1) (Total for Question 1 = 6 marks)

3

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

AREA

S H H

WRITE IN

DO NOT

	A	B	⊠ C	D	(1)
(ii) Which sta	age of the g	raph shows the bee	e moving at the faste	est speed?	(1)
	3 A	B	⊠ C	D	<u> </u>
(iii) State the	equation li	nking average spee	d, distance moved a	nd time taken.	(1)
(iv) Calculate	e the averag	e speed of the bee	during the first 35 se	econds of its journ	ey. (2)
(c) Illtroviolet w		ad hu haas ta idanti		=	m/s
		ultraviolet waves.	fy markings on flow	ers.	
					(1)
(ii) State a si milarity			en ultraviolet waves	and visible light	waves (2)
ifference					
			(Total for O	uestion 2 = 10 m	arks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The car stops without hitting the obst State three factors that could have aff 1	the road and stops the car as quickly as possible. acle. ected the stopping distance of the car. (3)	DO NOT WRITE IN THIS AREA
	(Total for Question 3 = 3 marks)	DO NOT WRITE IN THIS AREA
	DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA

P 5 2 9 8 7 A 0 6 2 8

4 A student needs to find the mass of a large steel bolt but does not have access to a balance.

The student knows the density of steel.

Describe how he can accurately find the mass of the bolt using its density.

You may draw a diagram to help your answer.

(5)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 4 = 5 marks)

Explain how this insulation reduces the amount of thermal e	energy lost from the root.
	(4
(d) The house is heated with a gas boiler that is 75% efficient.	
Chemical energy in the gas is transferred to thermal energy	by burning.
Some of the thermal energy is useful.	
Some of the thermal energy is wasted.	
Draw a Sankey diagram for this energy transfer.	(3

9

DO NOT WRITE IN THIS AREA

The diagram shows a chair with a weight of 370 N. 6 DO NOT WRITE IN THIS AREA 370 N (a) Draw an X on the diagram to show the centre of gravity of the chair. DO NOT WRITE IN THIS AREA (1) (b) The chair has four legs. Each leg has an area of 5.2 cm² in contact with the floor. (i) State the equation relating pressure, force and area. (1) (ii) Calculate the pressure exerted on the floor by each leg. Give a suitable unit. (4) DO NOT WRITE IN THIS AREA pressure = unit

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

10

DO NOT WRITE IN THIS AREA	(c) A manufacturer supplies plastic cups that are placed under the legs of the chair.
	The manufacturer claims that using the cups will reduce the risk of damage to the floor.
AREA	Evaluate the manufacturer's claim. (3)
DO NOT WRITE IN THIS AREA	
-	(Total for Question 6 = 9 marks)
DO NOT WRITE IN THIS AREA	

		(ii) Describe the relationship between the pressure of a gas and its volume.	
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA	You may sketch a graph to help your answer.	(3)
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA	(Total for Question 9 = 8 mai	<u>'ks)</u>
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA		
			15 Turn over

P 5 2 9 8 7 A 0 1 6 2 8

DO NOT WRITE IN THIS AREA

(iii) The astronaut then lifts the hammer back to its origir	nal height.
State the amount of work done in lifting the hammer	
	(1)
WOI	rk done = J
(iv) Explain why the astronaut would have to do more wo through the same height on Earth.	ork to lift the same hammer
	(3)
(c) Another astronaut is stationed in the International Space	e Station (ISS).
The ISS orbits the Earth with an orbital radius of 6780 km	n and an orbital speed of 7.66 km/s.
Calculate the number of orbits the ISS makes in one day.	(4)
	(-+)
numbe	er of orbits =
	for Question 10 = 14 marks)
(1014)	
	1
$\begin{array}{ $	III IIII Turn ov

DO NOT WRITE IN THIS AREA

11 A student investigates the magnetic fields produced by bar magnets.

(a) Describe how the student could investigate the shape and direction of the magnetic field around a single bar magnet.

You may draw a diagram to help your answer.

(3)

P 5 2 9 8 7 A 0 1 8 2 8

(b) The student puts opposite poles of two strong bar magnets near each other.

The diagram shows part of the magnetic field produced.

Only a small part of each magnet is shown.

Explain why the diagram shows that the magnetic field is uniform.

(2)

P 5 2 9 8 7 A 0 1 9 2 8

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

He then moves the piece of wire through the magnetic field betweer	ter.	
(i) Explain why the ammeter displays a small current when the wire between the magnets.	-	DO NOT WRITE IN THIS AREA
(ii) State two ways that the student could increase the current using	the same wire. (2)	DC
(Total for Questi	on 11 = 9 marks)	DO NOT WRITE IN THIS AREA
		DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

13 A teacher investigates the types of radiation emitted by three radioactive sources. He does this by measuring the amount of radiation (the count) received by a detector. He uses this method.
place detector 4 cm from the source

- use the detector to measure the count for one minute
- repeat for all three radioactive sources

The teacher then measures the count for each source again, using paper, aluminium and lead as absorbing materials between the source and the detector.

(a) Name two pieces of equipment that the teacher would need to use in order to measure the count in this investigation.

1

2

(2)

(4)

(b) Table 1 shows the results of the teacher's investigation.

	Count with no absorber	Count with paper	Count with aluminium	Count with lead
Source 1	654	652	649	30
Source 2	818	820	29	31
Source 3	6980	2807	32	33

(i) Complete Table 2 by ticking (\checkmark) boxes to show which types of radiation are emitted by each source.

	Alpha	Beta	Gamma
Source 1			
Source 2			
Source 3			

	(ii) Suggest why there is a count for each source, even when lead is used as an absorbing material.	(1)
(c)	Another radioactive source, X, has a half-life of 6 days. (i) State what is meant by the term half-life .	(2)
	 (ii) The initial count for source X is 780 counts per minute. Estimate how many days it will take for the counts per minute for source X to fall below 100. 	(3)
	(Total for Question 13 = 12 I	-

24

indepen	lent variable	
depende	nt variable	
(i) Plot a graph of the student's results on the grid.	(4)
(i	i) Draw a curve of best fit.	
(.		(1)
(i	/) Use your graph to estimate the resistance of the thermistor when the	
	temperature is 40 °C.	(1)
	resistance =	Ω

DO NOT WRITE IN THIS APEA DO NOT WRITE IN THIS AREA

(v) Suggest three improvements for his investigation.	(3)	DO NOT
		DO NOT WRITE IN THIS AREA
(c) The thermistor is taken out of the water and connected in a series circuit	with a 6.10 V cell.	
The resistance of the thermistor is 1060 Ω .		
(i) State the equation linking voltage, current and resistance.	(1)	DO NOT WRITE IN TH
(ii) Calculate the current in the circuit.	(2)	THIS AREA
current =	A	DO NOT WRI
		DO NOT WRITE IN THIS AREA
26		J

D	V	(iii) Explain what will happen to the current in the circuit when the temperature of the thermistor increases. (3)
DO NOT WRITE IN THIS AREA	IN THIS AREA	
E IN THIS AI	DO NOT WRITE	
REA	DO	
		(Total for Question 14 = 18 marks)
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA	TOTAL FOR PAPER = 120 MARKS
DO NOT WRITE IN THIS AREA	DO NOT WRITE IN THIS AREA	
		27

BLANK PAGE

Every effort has been made to contact copyright holders to obtain their permission for the use of copyright material. Pearson Education Ltd. will, if notified, be happy to rectify any errors or omissions and include any such rectifications in future editions.

