CHEMISTRY A LEVEL PAPER 1 MARK SCHEME

Question number	Answer	Additional guidance	Marks
1(a)	В		1
1(b)	В		1
1(c)	C		1
1(d)(i)	An explanation that makes reference to the following points:		2
	 the shape is V-shaped/bent (1) because the three electron pairs on Sn repel one another (1) 	First marking point can be awarded for a correctly-drawn diagram	
1(d)(ii)	 prediction: any value between 95 and 119° (1) justification: lone pair – bond pair repulsion is greater than bond pair – bond pair repulsion (and hence the angle is less than 120°) (1) 		2

(Total for Question 1 = 7 marks)

Question number	Answer	Additional guidance	Marks	
2(a)	D			1
2(b)	В			1
2(c)	D			1
2(d)	 order: GZ > DX > EY 	(1)		3
	Justification:			
	• the ions in GZ have higher charges (than those in			
	both EY and DX)	(1)		
	• the ions in DX are smaller than those in EY	(1)		
2(e)	construction of balanced cycle	(1)	Example calculation	2
	 substitution and evaluation of 2nd IE 	(1)	- 2258 = -590 - 2 nd IE + 2 (349) - 178 - 2 (122) - 796	
			hence 2^{nd} IE = (+) 1148 (kJ mol ⁻¹)	
			correct answer, no working scores 2 marks	
L			(Total for Question 2 =	8 marks)

3(a) • (V) $(1s^22s^22p^63s^2)3p^63d^34s^2$ (1)Allow $4s^23d^3$ • $(V^{3+}) (1s^22s^22p^63s^2)3p^63d^2$ (1)Allow $4s^23d^3$ 3(b)(i) An explanation that makes reference to the following points: • E° of redox system 5 is more negative / lessAccept explanations based on calculating E°_{cell}	2
• (V^{3+}) $(1s^22s^22p^63s^2)3p^63d^2$ (1) 3(b)(i) An explanation that makes reference to the following points: • E° of redox system 5 is more negative / lessAccept explanations based on calculating E°_{cell}	3
3(b)(i) An explanation that makes reference to the following points: • E* of redox system 5 is more negative / less Accept explanations based on calculating E* cell	3
• E° of redox system 5 is more negative / less Accept explanations based on calculating E°_{cell}	
positive than that of both redox systems 4 and 3 (but not than that of redox systems 2 and 1) (1)	
• therefore SO ₂ releases electrons to / reduces VO_2^+ to VO^{2+} and then VO^{2+} to V^{3+} (1) Accept correct use of anticlockwise rule	
• (yellow to) blue <u>then</u> green (1) Ignore green colour before blue	
3(b)(ii) The reaction is not feasible because:	2
• E° of redox system 2 is less negative than that of redox system 1 (1) Accept explanations based on calculating E°_{cell} for the reactions	
• therefore V^{2+} ions in system 2 will not release electrons to the V^{2+} ions in system 1 (1) Accept correct use of anticlockwise rule	

(Total for Question 3 = 7 marks)

Question number	Answer	Additional Guidance	Marks
4(a)	 axes: correct way round, labelled, suitable scale (1) all points plotted correctly to nearest gridline AND straight line through first 3 points, straight line 	The scale is suitable if the distance between the first point plotted and the last point plotted covers more than half of the graph paper on each axis.	2
	through last 3 points, and the two lines intersect (1)		
4(b)(i)	10 (cm ³) (1)	Award mark for a value read correctly from the candidate's graph	1
4(b)(ii)	$(0.005 \times 0.5) = 2.5(0) \times 10^{-3} / 0.0025 \text{ (mol)}$ (1)		1
4(b)(iii)	$(0.010 \times 1.00) = 1 \times 10^{-2} / 0.01 \text{ (mol)}$ (1)	Answer to (iii) csq on (ii)	1
4(b)(iv)	x = 4 and y = 2 (1)	Answer to (iv) csq on (i) and (ii), but x + y must total 6	1
4(c)	$Cu^{2+}(aq) + 2OH- (aq) → Cu(OH)2(s)$ • correctly balanced equation (1)	Allow $[Cu(H_2O)_6]^{2+}(aq) + 2OH^{-}(aq) \rightarrow$ $Cu(H_2O)_4(OH)_2(s) + 2H_2O(I)$	2
	• state symbols (1)		

(Total for Question 4 = 8 marks)

Question number	Answer		Additional guidance	Marks
5(a)	Cl_2 + 2NaOH \rightarrow NaOCI + NaCI + H ₂ O	(1)	Accept Cl_2 + $2OH^- \rightarrow OCI^- + CI^- + H_2O$	1
		Ignore state symbols		
5(b)	An explanation that makes reference to the following points:		3	
	• Cl has oxidation number +4 to in ClO_2	(1)	Accept 4+	
	 CI (in CIO₂) changes oxidation number to +3 (CIO and +5 (CIO₃⁻) 	O₂ ⁻) (1)	Accept 3+ and 5+	
	 (therefore) chlorine/it (in ClO₂) has been both oxidised and reduced 	(1)	Allow answers in any order	
5(c)(i)	A			1
5(c)(ii)	An answer that makes reference to the following points		2	
	 Mn changes from +7 to +2 and Cl changes from to 0 	-1 (1)	Accept 7+ and 2+	
	- therefore ratio is MnO_4^- to $5Cl^-$ /the ratio of MnO to Cl^- is 1 to 5	4 ⁻ (1)	Accept 1–	
5(d)(i)	An explanation that makes reference to the following points:			2
	 the HBr dissolves in water (in the air) 	(1)		
	 and forms droplets (of hydrobromic acid) 	(1)		
5(d)(ii)	• the (conc.) H ₂ SO ₄ is reduced to SO ₂	(1)	Accept redox	1
			(Total for Question 5 = 1	0 marks)

Question number	Answer	Additional guidance	Marks	
6(a)	 determines number of mol of CO₂ produced 	(1)	Example of calculation	4
	• calculates number of mol NaO_2 in 880 g	(1)	2 mol glucose produces 12 mol CO_2 880 g NaO ₂ = 16 mol	
	- calculates the number of mol of CO_2 reacted with NaO_2 and hence determines the number of mol o CO_2 in excess	f [1)	16 mol NaO ₂ remove 8 mol CO ₂ (therefore 4 mol CO ₂ is excess) mass of Na ₂ O required is $(4 \times 62) = 248$ g	
	• calculation of mass of $Na_2O = 248 g$ ((1)	3 rd mark is csq on answers given in 1 st and 2 nd marks 4 th mark is csq on answer given in 3 rd mark	
			Correct answer with units and no working scores 4 marks.	
6(b)	An explanation that makes reference to the following points: $\times O \times O $		Accept any other symbols in place of dots and crosses, including a minus sign to replace the triangle	2
	× ••	(1)		
	 it is a radical because it has an unpaired electron 	(1)		

6(c)• calculation of number of moles Na_2O_2 (= mols H_2O_2)Example of answer n $(Na_2O_2) = (0.403 \div 78.0) = 5.17 \times 10^{-3}$ n $(Ce^{4+}) = (24.85 \div 1000 \times 0.420)$ $= 1.04 \times 10^{-2}$ n $(Ce^{4+}) : n(H_2O_2) = 1.04 \times 10^{-2} : 5.17 \times 10^{-3}$ $= 2 : 1$ 4• determination of the ratio $H_2O_2 : Ce^{4+}$ • formula of cerium ion is Ce^{3+} (1) I^{st} and 2^{nd} mark: accept answers to any significant figures, except 1s.f 3^{rd} mark csq on answers given in 1^{st} and 2^{nd} marks4	Question number	Answer	Additional guidance	Marks
3 rd mark csq on answers given in 1 st and 2 nd	6(c)	 calculation of number of moles Na₂O₂ (= mols H₂O₂) (calculation of number of moles Ce⁴⁺ (determination of the ratio H₂O₂ : Ce⁴⁺ (formula of cerium ion is Ce³⁺ ($\begin{array}{l} \hline Example of answer \\ n(Na_2O_2) &= (0.403 \div 78.0) = 5.17 \times 10^{-3} \\ n(Ce^{4+}) &= (24.85 \div 1000 \times 0.420) \\ &= 1.04 \times 10^{-2} \\ n(Ce^{4+}) &: n(H_2O_2) = 1.04 \times 10^{-2} &: 5.17 \times 10^{-3} \\ &= 2 : 1 \end{array}$	4
4 th mark csq on answer given in 3 rd mark			3 rd mark csq on answers given in 1 st and 2 nd marks 4 th mark csq on answer given in 3 rd mark) marka)

Pearson Edexcel Level 3 Advanced GCE in Chemistry Sample Assessment Materials – Issue 1 – February 2015 © Pearson Education Limited 2015

Question number	Answer	Additional guidance	Marks	
7(a)	В			1
7(b)(i)	 calculation of n(CO) at equilibrium and n(H₂) at equilibrium converting number of moles to concentration evaluation of K_c by substitution 	(1) (1) (1)	$\frac{\text{Example of calculation}}{n(\text{CO}) \text{ at equilibrium} = 0.114 (mol)} n(\text{H}_2) \text{ at equilibrium} = 0.228 (mol) [CO] = 0.0950 moldm-3, [H_2] = 0.190 moldm-3, [CH_3OH] = 0.0717 mol dm-3 K_c = 0.0717 \div (0.0950 \times 0.190^2) = 20.9068 = 20.9 dm6 mol-2$	5
	correct answer to 3 sf	(1)		
	• units: dm ⁶ mol ⁻²	(1)	Allow mol ⁻² dm ⁶	
			3 rd and 4 th marks csq on answers given in 1 st and 2 nd marks	
			Correct final answer to 3 sf with units but no working scores 5 marks	
7(b)(ii)	An explanation that makes reference to the following points:			3
	 an increase in temperature shifts the equilibrium the left 	n to (1)		
	an increase in pressure shifts the equilibrium to right	the (1)		
	 these changes produce opposing effects, so to predict the effect on the yield it is necessary to know the relative effects of each one 	(1)		
L	1		(Total for Question 7 =	9 marks)

Question number	Answer	Additional guidance	Marks
8(a)	Α		1
8(b)(i)	An explanation that makes reference to the following points:		2
	 stage 2 is an equilibrium reaction / only partial ionisation occurs (1) 	Accept dissociation for ionisation	
	• therefore fewer hydrogen ions are formed (1)		
8(b)(ii)	 rearrangement of equation pH = - log [H⁺] and substitution to give final answer (1) 	Example calculation: $[H^+] = 10^{-pH}$ $10^{-0.97} = 0.107 \text{ (mol dm}^{-3}\text{)}$	1
		Allow 0.11 (mol dm ⁻³)	
		Correct answer with no working scores 1 mark	
8(c)	• rearrangement of K_a expression (1)	Example of calculation : $[H^+] = K_a \frac{[CH_3COOH]}{[CH_3COO^-]}$	4
	• calculation of [CH ₃ COOH] and [CH ₃ COO ⁻] (1)	$[CH COOH] = 0.333 \text{ mol dm}^{-3} \text{ and}$	
	 substitution, and evaluation of [H⁺] in the buffer solution (1) 	$[CH_{3}COO^{-}] = 0.167 \text{ mol dm}^{-3}$ $[CH_{3}COO^{-}] = 1.74 \times 10^{-5} \times 0.333 / 0.167$	
	• conversion of $[H^+]$ to pH for buffer solution (1)	$= 3.48 \times 10^{-5} \text{ (mol dm}^{-3}\text{)}$ so pH = -lg 3.48 x 10 ⁻⁵ = 4.46	
		Accept answers that use forms of the Henderson-Hasselbach equation	
		Correct answer with no working scores 4 marks	0

Question number	Answer	Additional guidance	Marks
9(a)(i)	А		1
9(a)(ii)	 Normalized and the second se	Charge and square brackets not required Allow dotted lines for the wedges going backwards Allow arrows to represent dative covalent bonds instead of electron pairs	2
9(b)	 step 1 – ligand substitution/ligand exchange (1) step 2 – redox (1) 	Allow reduction and oxidation	2
9(c)	 identification: green precipitate is iron(II) hydroxide (1) 	Allow Fe(OH) ₂ / Fe(H ₂ O) ₄ (OH) ₂	3
	 Explanation: precipitate turns brown because iron(II) hydroxide is oxidised by oxygen (and water) in the air (1) to form iron(III) hydroxide (1) 	Allow $Fe(OH)_2 / Fe(H_2O)_2(OH)_2$	
		(Total for Question 9 =	8 marks)

Question number	Answer	Additional guidance	Marks	
10(a)	An explanation that makes reference to the following points:			3
	 they get more stable down the group 	(1)		
	 because the size of the cations increases/charge density of cations decreases 	(1)		
	 and so carbonate ions are less polarised 	(1)		
10(b)	rearrangement of equation	(1)	Example of calculation - 2493 + $\Lambda H_{colution} = -1920 + (-2 \times 364)$	2
	• calculation of $\Delta H_{solution}$	(1)	$\Delta H_{\text{solution}} = -155 \text{ (kJ mol}^{-1}\text{)}$	
			Correct sign must be given in final answer	
			Correct answer and sign with no working scores 2 marks	
10(c)(i)	An explanation that makes reference to the following points:			2
	 breaking the lattice is endothermic and the hydration of ions is exothermic 	(1)		
	 (therefore the dissolving of magnesium sulphate exothermic) because the enthalpy of hydration (of the ions) is greater in magnitude than the 	e is		
	lattice energy (of MgSO ₄)	(1)		
10(c)(ii)	• $\Delta G^{\circ} = -87 - (298 \times -0.210)$ = -24(.42) (kJ mol ⁻¹)	(1)		2
	• since ΔG is negative the process/reaction is spontaneous/feasible	(1)		

Question number	Answer			Additional guidance	Marks
*10(d)	This question coherent and fully-sustained Marks are awa answer is stru The following awarded for in Number of indicative marking points seen in answer 6 5-4 3-2 1 0	assesses a stude logically structure d reasoning. arded for indicative ctured and show table shows how ndicative content. Number of marks awarded for indicative marking points 4 3 2 1 0	nt's ability to show a ed answer with linkages and ve content and for how the s lines of reasoning. the marks should be	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	6

Question number	Answer		Additional guidance	Marks
*10(d)	The following table shows how the marks should be			
cont.		Number of marks awarded for structure of answer and sustained line of reasoning		
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2		
	Answer is partially structured with some linkages and lines of reasoning.	1		
	Answer has no linkages between points and is unstructured.	0		
	awarded for structure and lines of reasoning. Indicative content			
	$(\Delta G^{e}_{solution} = \Delta H^{e}_{solution} - T\Delta S^{e}_{system})$			
	• for BaSO ₄ : $\Delta H^{\circ}_{solution}$ and $-T\Delta S^{\circ}_{system}$ are both positive (1)			
	• for CaSO ₄ : $\Delta H^{\circ}_{solution}$ is negative and $-T\Delta S^{\circ}_{system}$ is positive (1)			
	• but the magnitude of $-T\Delta S^{\bullet}_{system}$ is greater than that of $\Delta H^{\bullet}_{solution}$ (1)			
	• therefore $\Delta G^{\circ}_{\text{solution}}$ for both salts is positive (1)			
	• when $\Delta G^{\circ}_{\text{solution}}$ is positive the salt is only slightly soluble (1)			
	• BaSO ₄ is less soluble than CaSO ₄ because $\Delta G^{\circ}_{solution}$ is more positive (1)			

Pearson Edexcel Level 3 Advanced GCE in Chemistry Sample Assessment Materials – Issue 1 – February 2015 © Pearson Education Limited 2015