4721 Core Mathematics 1

1 (i) $n = -2$	B1 1	
(ii) $n = 3$	<u>B1</u>	
	1	

(iii) **M1**
$$\sqrt{4^3}$$
 or $64^{\frac{1}{2}}$ or $\left(4^{\frac{1}{2}}\right)^3$ or $\left(4^3\right)^{\frac{1}{2}}$ or

 $4 \times \sqrt{4}$ with brackets correct if used

$$\frac{3}{2}$$

2 (i) M1 $y = (x \pm 2)^2$

$$y = (x-2)^2$$
 A1 2
0 $y = -(x^3 - 4)$ B1 oe

A1 2

1

3 (i) $\sqrt{2 \times 100} = 10\sqrt{2}$ B1

(ii)
$$\frac{12}{\sqrt{2}} = \frac{12\sqrt{2}}{2} = 6\sqrt{2}$$
 B1

(iii) M1 Attempt to express $5\sqrt{8}$ in terms of $\sqrt{2}$ $10\sqrt{2} - 3\sqrt{2} = 7\sqrt{2}$ A1
2

4 $y = x^{\frac{1}{2}}$ $2y^2 - 7y + 3 = 0$ M1* Use a substitution to obtain a quadratic or

$$y = \frac{1}{2}, y = 3$$
A1
M1 Attempt to square to obtain x
 $x = \frac{1}{4}, x = 9$
A1
SR If first M1 not gained and 3 and $\frac{1}{2}$

given as final answers, award B1

5

A1
$$kx^{-1}$$

M1 Correct substitution of
$$x = 9$$
 into their

A1
$$\frac{7}{3}$$
 only

$$dx$$
 3

 $\frac{\mathrm{d}y}{\mathrm{d}x} = 4x^{-\frac{1}{2}} + 1$

6 (i) (x-5)(x+2)(x+5)

$$=(x^2-3x-10)(x+5)$$


$$= x^3 + 2x^2 - 25x - 50$$

 $x^2 - 3x - 10$ or $x^2 + 7x + 10$ or $x^2 - 25$ **B1**

M1 Attempt to multiply a quadratic by a linear factor

A1 3

(ii)

B1 +ve cubic with 3 roots (not 3 line segments)

B1√ (0, -50) labelled or indicated on y-axis

B1 (-5, 0), (-2, 0), (5, 0) labelled or indicated

on x-axis and no other x- intercepts

8 < 3x - 2 < 11

$$\frac{10}{3} < x < \frac{13}{3}$$

M1 2 equations or inequalities both dealing with all 3 terms resulting in a < kx < b

A1 10 and 13 seen

A1

3

(ii) $x(x+2) \ge 0$

 $x \ge 0, x \le -2$

3 **M1** Correct method to solve a quadratic

A1

Correct method to solve inequality **M1**

A1

4

8 ((i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2kx + 1$	B1	One term correct
		u.	B 1	Fully correct
			2	
((ii)	$3x^2 - 2kx + 1 = 0$ when $x = 1$	M1	their $\frac{dy}{dx} = 0$ soi
		3-2k+1=0	M1	$x = 1$ substituted into their $\frac{dy}{dx} = 0$
		k = 2	A1 √ 3	
($\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 6x - 4$	M1	Substitutes $x = 1$ into their $\frac{d^2y}{dx^2}$ and looks at sign
		When $x = 1$, $\frac{d^2 y}{dx^2} > 0$: min pt	A1	States minimum CWO
			2	
((iv)	$3x^2 - 4x + 1 = 0$	M1	their $\frac{dy}{dx} = 0$
		(3x-1)(x-1) = 0	M1	correct method to solve 3-term quadratic
		$x = \frac{1}{3}, x = 1$		
		$x = \frac{1}{3}$	A1	WWW at any stage
		J	3	

9 (i)		B1	$(x-2)^2$ and $(y-1)^2$ seen
	$(x-2)^2 + (y-1)^2 = 100$	B1	$(x \pm 2)^2 + (y \pm 1)^2 = 100$
	$x^2 + y^2 - 4x - 2y - 95 = 0$	B1	correct form
		3	
(ii)	$(5-2)^2 + (k-1)^2 = 100$	M1	x = 5 substituted into their equation
	$(k-1)^2 = 91$ or $k^2 - 2k - 90 = 0$	A1	correct, simplified quadratic in k (or y) obtained
	$k = 1 + \sqrt{91}$	A1	cao
	N - 1 1 4 2 1	3	Cao
(iii)	distance from (-3, 9) to (2, 1)		
	$=\sqrt{(2-3)^2+(1-9)^2}$	M1	Uses $(x_2 - x_1)^2 + (y_2 - y_1)^2$
	$=\sqrt{25+64}$	A1	
	$=\sqrt{89}$		
	$\sqrt{89}$ < 10 so point is inside	B1	compares their distance with 10 and makes consistent conclusion
		3	
(iv)	gradient of radius = $\frac{9-1}{8-2}$	M1	uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{4}{3}$	A1	oe
	gradient of tangent $=-\frac{3}{4}$	B1√	oe
	$y - 9 = -\frac{3}{4}(x - 8)$	M1	correct equation of straight line through (8, 9).
			any non-zero gradient
	$y - 9 = -\frac{3}{4}x + 6$		
	$y = -\frac{3}{4}x + 15$	A1	oe 3 term equation
	4		

10 (i) $2(x^2-3x)+11$	$\mathbf{B1} \qquad p=2$
$=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right]+11$	B1 $q = -\frac{3}{2}$
$=2\left(x-\frac{3}{2}\right)^2+\frac{13}{2}$	M1 $r = 11 - 2q^2$ or $\frac{11}{2} - q^2$
	$\mathbf{A1} \qquad r = \frac{13}{2}$
	4
$(ii) \left(\frac{3}{2}, \frac{13}{2}\right)$	В1√
	B1√ 2
(iii) 36-4×2×11	$\mathbf{M1} \text{uses } b^2 - 4ac$
= -52	A1 2
(iv) 0 real roots	B1 cao
$(\mathbf{v}) 2x^2 - 6x + 11 = 14 - 7x$	M1* substitute for x/y or attempt to get an equation in 1 variable only
$2x^2 + x - 3 = 0$	A1 obtain correct 3 term quadratic
(2x+3)(x-1) = 0	M1dep correct method to solve 3 term quadratic
$x = -\frac{3}{2}, x = 1$	A1
$y = \frac{49}{2}, y = 7$	A1
	SR If A0 A0, one correct pair of values, spotted or from correct factorisation www B1 5