Oxford Cambridge and RSA

GCE

Chemistry B (Salters)

Unit F332: Chemistry of Natural Resources
Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
ECF	Incorrect response
TE	Error carried forward
NBOD	Transcription error
POT	Benefit of doubt not given
\boldsymbol{A}	Power of 10 error
SF	Omission mark
\boldsymbol{S}	Error in number of significant figures
	Correct response
\boldsymbol{Z}	Wrong physics or equation

Abbreviations, annotations and conventions

Annotation	Meaning
(1)	alternative and acceptable answers for the same marking point
reject	Separates marking points
not	Answers which are not worthy of credit
IGNORE	Answers which are not worthy of credit
ALLOW	Answers that can be accepted
()	Urds which are not essential to gain credit
-	Alternative wording
ACF	Or reverse argument
ORA	

Question			Answer	Mark	Guidance
1	a	i	Any TWO from: Consist entirely of carbon atoms Giant (network) / giant (lattice) Covalent	2	Must have the idea that it consists of only carbon ALLOW giant structure. IGNORE Macromolecular DO NOT ALLOW 'covalent' mark if there are references to ionic or intermolecular bonds or molecules in either substance.
1	a	ii	Two from: Every C bonded to 4 C Diamond doesn't have layers 3-dimensional/3D OR tetrahedral OR bond angle $109(.5)^{\circ}$ Does not have delocalised electrons.	2	Answer must imply 'each', 'every' or 'all' carbons to score the mark. IGNORE Free electron(s)
1	b		$\begin{aligned} & 44 / 12 \times 51(=187) \checkmark \\ & \text { OR } \\ & 51 / 720 \times 60 \times 44(=187) \\ & \text { sf mark: } 190 \mathrm{~g} \checkmark \end{aligned}$	2	ALLOW sf mark for any 2 sig fig answer that follows from any calculation 3.1 scores 1 (sf mark for incomplete calculation)
1	c	i	High pressure (under the ocean keeps the CO_{2} in place) AW OR it will dissolve in seawater (before it can escape) AW \checkmark	1	ALLOW becomes aqueous

Question			Answer	Mark	Guidance
1	c	ii	Two from: Plant more trees/plants/afforestation/reforestation (AW) \checkmark Promote photosynthesis by phytoplankton (AW) \checkmark Reacting the CO_{2} with lime / slaked lime / other suitable named solid / metal oxides \checkmark Disposing of it in an old mine / well / pump it into rocks/ other suitable disposal site \checkmark	2	NOT methods of putting less CO_{2} into the atmosphere, like burning less fossil fuel. IGNORE Lime water IGNORE "carbon capture methods" unless specified
1	c	iii	Carbon monoxide causes (photochemical) smog OR is poisonous/toxic AW Carbon dioxide causes global warming/ greenhouse effect	2	ALLOW warming of atmosphere/ increases global temperature IGNORE greenhouse gas
1	d		(Increased acidity) moves equilibrium (position) in equation 1.2 to the left / to the reactants / named reactant Increased $\mathrm{CO}_{2}(\mathrm{aq})$ moves equilibrium (position) of equation 1.1 to the left / to the reactant / towards $\mathrm{CO}_{2}(\mathrm{~g})$ $\mathrm{CO}_{2}(\mathrm{~g})$ (concentration) increases \checkmark	3	For MP1 and MP2 ALLOW 1 mark if describe what is happening in equations 1.2 and 1.1 (in correct sequence) but do not mention equilibrium. ALLOW 2 marks if equilibrium is stated in 1.2 or 1.1 and has described what is happening in both equations. Equation numbers can be implied Maximum of 1 mark for an incorrect sequence (ie 1.1 then 1.2) IGNORE Produces more CO_{2}
1	e	i	Bonds (in CO_{2}) absorb ir / bonds in CO_{2} vibrate (more) / increases vibrational energy of bonds in $\mathrm{CO}_{2} \checkmark$ Only certain frequencies/wavelengths/wavenumbers of ir are absorbed / bonds vibrate at specific frequencies \checkmark	2	IGNORE references to emitting Must mention absorb somewhere in answer for mp2

Question			Answer	Mark	Guidance
1	e	ii	$\text { Energy }=21.7 \times 1000(=21700) \mathrm{J} \checkmark$ Energy in J/ $6.02 \times 10^{23}\left(=3.60 \times 10^{-20}\right) \mathrm{J}$ Frequency $=$ energy $/ 6.63 \times 10^{-34}$ and evaluate $(=5.44 \times$ $\left.10^{13} \mathrm{~Hz}\right) \checkmark$	3	First mark is for converting 21.7 from kJ to J i.e.: multiply by 1000 . Second mark is for dividing by 6.02×10^{23} (the Avogadro constant). ALLOW ecf To get second and third marks, there must be a correct evaluation ALLOW ecf IGNORE sig figs. ALLOW $5.43 \times 10^{13} \mathrm{~Hz}$ unless there is an obvious rounding error 3.27×10^{37} scores 2 (not divided by Avogadro constant) A completely correct answer on its own scores 3 marks.
				19	

| Question | | Answer | Mark | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | \mathbf{a} | | | |

Question			Answer	Mark	Guidance
2	e	ii	(Partially) positively charged species / electron deficient reagent / electron pair acceptor $A W \checkmark$ bonds by accepting a pair of electrons/	2	ALLOW atom/molecule/positive ion
2	e	iii	Bromide (ion) / Br^{-}attacks / bonds with carbocation OR Bromide (ion) / Br^{-}attacks / bonds with intermediate $\mathrm{A} \checkmark$ Chloride (ion) / Cl^{-}attacks / bonds with carbocation OR Chloride (ion) / Cl^{-}attacks / bonds with intermediate A Attack by Bromide (ion) / $\mathrm{Br}{ }^{-}$gives $\mathrm{CH}_{2} \mathrm{BrCH}_{2} \mathrm{Br}$ OR Attack by Chloride (ion) / Cl^{-}gives $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Br} \checkmark$	3	ALLOW 'attract' for 'attack' provided it leads to a reaction/product. ALLOW forms a bond with ALLOW reacts with ALLOW C+ or cation for carbocation ALLOW 1 mark for: Carbocation / intermediate A is attacked by nucleophiles OR species carrying negative charge Referring to Chlorine /Bromine (ions) loses $\mathrm{mp1} / \mathrm{mp} 2$ but not mp3 Referring to Br^{-}or Cl^{-}as electrophiles/electron pair acceptors negates one mark ALLOW marks from suitable diagrams.
2	f	i	$\begin{aligned} & \text { Water } \checkmark \\ & \text { Hydroxide (ions) } \checkmark \end{aligned}$	2	ALLOW formulae ($\mathrm{H}_{2} \mathrm{O}$ or OH^{-}) Allow Hydroxyl ion
2	f	ii		1	Must show all atoms and all bonds. IGNORE bond angles and lone pairs
2	f	iii	Amine(s). \checkmark	1	IGNORE alkyl, primary DO NOT ALLOW ammine ALLOW amino alkane

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multicolumn{3}{|l|}{Answer} \& Mark \& Guidance \\
\hline 2 \& f \& iv \& \multicolumn{3}{|l|}{\begin{tabular}{l}
(At higher temperatures): particles have more kinetic energy OR particles move faster OR more collisions per unit of time OR more frequent collisions \(\checkmark\) \\
more collisions are successful / effective \\
OR \\
more collisions have (total) energy of at least the activation energy / more particles collide with an energy \(\geq\) Ea \(\checkmark\)
\end{tabular}} \& 2 \& \begin{tabular}{l}
ALLOW molecules or ions for particles ALLOW reverse argument throughout. IGNORE KE \\
Must be clear that collisions are between particles/molecules/ions, not reactants or similar wording. \\
DO NOT ALLOW more chance of / likelihood of collisions. \\
IGNORE more particles have energy \(\geq\) than \(\mathrm{E}_{\mathrm{a}}\)
\end{tabular} \\
\hline 2 \& g \& i \& \begin{tabular}{|c|}
\hline \begin{tabular}{c}
Absorption \\
ranges \(/ \mathbf{c m}^{-1}\)
\end{tabular} \\
\hline \(3200-3640\) \\
\hline Plus one of: \\
\hline \(1050-1300\) \\
\hline \(2850-2950\) \\
\hline
\end{tabular} \& \begin{tabular}{l}
Bond \\
\(\mathrm{O}-\mathrm{H}\) \\
C-O \\
C-H
\end{tabular} \& \(\checkmark\)

\checkmark \& 2 \& | ALLOW OH range $3200-3600 \mathrm{~cm}^{-1}$ or $3600-3640 \mathrm{~cm}^{-1}$ |
| :--- |
| Mark is for a correct range within those given and correct bond in each case. |
| ALLOW OH, CH, CO but bond must only be between atoms |
| DO NOT ALLOW lower case letters |

\hline 2 \& g \& ii \& | Fingerprint (region) |
| :--- |
| Unique/distinct/character compound AW |
| OR can be used to identily with a database) |
| OR |
| Can differentiate betwee |
| OR |
| Unique for every molecu | \& | of the mpound |
| :--- |
| molecul | \&) to the arison \& 2 \& ALLOW 'molecule’, ‘substance’, 'chemical’ for compound DO NOT ALLOW 'element'

\hline
\end{tabular}

Question			Answer	Mark	Guidance
3	d	i	 Marks are awarded as follows: mp1 Lone pair and start of curly arrow from it in correct place mp2 End of curly arrow from Cl in correct place mp3 Curly arrow from C-O bond to $\mathrm{O} \checkmark$	3	DO NOT ALLOW single headed (half-curly) arrows. However, if candidate draws two single headed (halfcurly) arrows to the correct positions then award 1 mark for mp2 and mp3 If Cl^{-}instead of HCl then maximum 2 marks IGNORE arrow from $\mathrm{H}-\mathrm{Cl}$ bond to Cl Mp1 arrow must start close to lone pair Mp2 Curly arrow must be drawn carefully starting from the Cl and pointing to the C atom or an imaginary line between C and Cl Mp3 Curly arrow must be drawn carefully starting from the bond and pointing to the O atom Any additional arrow negates 1 mark Mark separately. IGNORE further reaction steps IGNORE partial charges on atoms ALLOW: marks can be awarded for SN1 mechanism which has attack by Cl' to the C+ atom. Do not award MP3 if leaving group is OH^{-}and not $\mathrm{H}_{2} \mathrm{O}$
3	d	ii	Nucleophilic Substitution \checkmark	2	ALLOW answers indicated in other ways, such as circles, ticks Each additional underline negates a mark.
3	e	i	Burette \checkmark	1	ALLOW small spelling error (e.g.: 2 rs or one t). NOT biuret.
3	e	ii	$\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$	1	IGNORE state symbols

Question			Answer	Mark	Guidance
3	e	iii	Moles $\mathrm{Ba}(\mathrm{OH})_{2}=(19.6 / 1000) \times 0.100\left(=1.96 \times 10^{-3}\right)^{\checkmark}$ Moles $\mathrm{H}^{+}=2 \times$ moles $\mathrm{Ba}(\mathrm{OH})_{2}\left(=3.92 \times 10^{-3}\right)$ OR $2 \mathrm{H}^{+}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ba}^{2+}$ Moles $\mathrm{H}^{+}=2 \times$ moles $\mathrm{Ba}(\mathrm{OH})_{2} / 50\left(=7.84 \times 10^{-5}\right)$ Previous ans $\times 1000\left(=7.84 \times 10^{-2}\right)$	3	ALLOW 2 or more sf Ecf from incorrect mole ratio 0.0196 scores 2 (have divided by 2, not x2) 0.0392 scores 2 (have used 1:1 ratio) IGNORE sig figs. A completely correct answer on its own scores 3 marks.
				17	

Question			Answer	Mark	Guidance
4	a		Sodium sulfate / Sodium sulphate/ $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or other salt with an anhydrous form \checkmark	1	ALLOW silica gel (but not just silica), sodium carbonate, calcium chloride, magnesium chloride, copper sulfate (this is only a selection of suitable responses) or correct formula for a salt with an anhydrous form. DO NOT ALLOW calcium carbonate, sodium hydrogen carbonate and conc sulphuric acid.
4	b	i	(Reaction of N_{2} and O_{2} during) lightning OR forest fires OR from bacterial processes OR photodissociation of $\mathrm{NO}_{2} \mathrm{AW}$.	1	
4	b	ii	Burning fuel in vehicle engines / putting fertilisers onto soil / use of aerosol spray /burning fossil fuels to generate electricity $A W \checkmark$	1	Answer must be an activity (e.g.: driving a vehicle) DO NOT ALLOW 'burning a fuel' without a context.
4	b	iii	Dinitrogen oxide \checkmark	1	ALLOW nitrogen (I) oxide or dinitrogen monoxide DO NOT ALLOW Dinitrogen (I) oxide
4	c		OR Bonding electrons correct Lone pairs correct \checkmark	2	Any two or three different symbols can be used to represent the electrons of different atoms. Candidate does not need to draw circles for electron shells. It MUST be clear that pairs of electrons are being shared between the two Ns and the N and the O . IGNORE inner shell electrons. Diagrams showing NO_{2} scores 0

Question			Answer			Mark	Guidance
4	d		$\begin{aligned} & 78 \%=780000 \mathrm{ppm} \checkmark \\ & 780000 / 0.38=2.1 \times 10^{6} \text { times more } \checkmark \\ & \text { OR } \\ & 0.38 \mathrm{ppm}=3.8 \times 10^{-5} \% \checkmark \\ & 78 / 3.8 \times 10^{-5}=2.1 \times 10^{6} \text { times more } \checkmark \end{aligned}$			2	ALLOW 2 or more sf ALLOW ecf from an incorrect conversion Correct answer scores 2
4	e		 Marks are for: Diagrams correctly But-2-ene for both E/Z correct way rou	E-but-2 Z-but-2		3	Mark independently No more than 2 bonds above or below the $\mathrm{C}=\mathrm{C}$ ALLOW skeletal structures ALLOW ambiguous attachments IGNORE Cis /Trans IGNORE Brackets around E / Z and hyphens
4	f		Component of air A B	Name Oxygen Argon	Formula $\overline{\mathrm{O}_{2}}$ Ar	1	All correct for the mark.
4	g	i	Evidence from more different surveys.	an one	om two or more	1	

Question			Answer	Mark	Guidance
4	g	ii	Homogeneous \checkmark	1	DO NOT ALLOW Homolytic
4	h		1. Both have hydrogen bonding \checkmark 2. Lone pair on oxygen \checkmark 3. (bonds to) hydrogen with δ^{+}charge on another molecule \checkmark 4. Ice is less dense because: molecules get further apart (ORA) OR 'more open structure' 5. (Intermolecular bonds) keep ice in a lattice / regular arrangement / crystalline structure / tetrahedral structure / ordered (AW) \checkmark QWC: (For same numbers of water molecules) ice takes up more room/space than liquid water, leading to lower density (of ice). (AW) \checkmark	5	MP2: NOT lone pair on oxygen molecule MP3: DO NOT ALLOW δ^{+}hydrogen molecule DO NOT ALLOW negative oxygen ALLOW partially positive (AW) MP2, MP3: ALLOW lone pair on O and $\mathrm{H}^{\delta+}$ from a diagram but must be H of OH group that has the partial positive charge, including anything between the molecules. MP4: Must be a comparison ALLOW any idea of greater separation of molecules Here, including anything between the molecules MP5: mention of 'air','oxygen' between molecules negates this mark, but IGNORE 'empty space' or 'open space'. IGNORE molecules less/more dense IGNORE strength of H bonds in water/ice
				20	

Question			Answer	Mark	Guidance
5	a		Photochemical smog \checkmark	1	
5	b	i	Any TWO from: Vehicle emissions Forests \checkmark Plants \checkmark	2	
5	b	ii	$\mathrm{O}_{3}+\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+{ }^{\circ} \mathrm{O}-\mathrm{O}^{-}{ }^{\circ} \mathrm{CH}_{2}$ OR $\mathrm{O}_{3}+\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2} \rightarrow \mathrm{H}_{2} \mathrm{CO}+{ }^{\circ} \mathrm{O}-\mathrm{O}-{ }^{\circ} \mathrm{CHCH}_{3}$ Right-hand side correct \checkmark Left-hand side correct	2	'Dots' for radicals are required here. ALLOW $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$ ALLOW $\mathrm{O}=\mathrm{O}-\mathrm{O}$ or with charges, ALLOW skeletal formulae. ALLOW full structural formulae of organic molecules IGNORE intermediate steps.
5	c	i	One from: $\begin{aligned} & \mathrm{CH}_{3}{ }^{\circ}+\mathrm{CH}_{3}{ }^{\cdot} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \\ & \mathrm{Cl}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{Cl} \\ & \mathrm{Cl} l^{+}+\mathrm{Cl}^{\circ} \rightarrow \mathrm{Cl}_{2} \checkmark \end{aligned}$	1	ALLOW equations without the radical 'dots'.
5	c	ii	Reaction only involves bond formation / making (and no bond breaking).	1	Must make it clear that it is only bond making that occurs
5	c	iii	$\mathrm{CCl}_{3}{ }^{+}+\mathrm{Cl}_{2} \rightarrow \mathrm{Cl} \bullet^{+}+\mathrm{CCl}_{4} \checkmark$	1	ALLOW equations without radical 'dots'.
5	d		Two from: Regulates ozone levels / ozone depletion Photochemical smog formation Ozonolysis (of alkenes) / reaction of ozone with alkenes Reaction with SO_{2} Reaction with NO_{2}	2	IGNORE forming (Criegee) biradicals ALLOW equations ALLOW formation of sulphuric acid / SO_{3} ALLOW formation of nitric acid / NO_{2} ALLOW formation of organic nitrates

Question			Answer	Mark	Guidance
5	e	i	Species with two unpaired electrons on different atoms. \checkmark	1	ALLOW a biradical carbonyl oxide / a carbonyl oxide with 2 unpaired electrons ALLOW molecules instead of species but not atoms
5	e	ii	$\mathrm{C}-\mathrm{Cl}$ bond needs higher frequency radiation (to break than C-I bond). Higher frequency equates to higher energy AND C-Cl bond is stronger/has higher bond enthalpy than C-I bond OR Higher frequency equates to higher energy AND C-Cl bond needs more energy (to break than C-I bond).	2	ORA throughout Must be comparisons throughout IGNORE references to electronegativity ALLOW E=hv as an explanation of high frequency equating to higher energy
5	f		Example: either $\cdot \mathrm{CH}_{2} \mathrm{OO} \quad \mathrm{OR} \quad \cdot \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{OO} \cdot \checkmark$ How they form: Volatile unsaturated compounds react with ozone. Why only recently detected - TWO from: They react extremely quickly. Only form in certain parts of the atmosphere where conditions are right. (AW) Alkene ozonolysis reactions are too slow in lab systems to generate enough Criegee biradicals to detect. How they have been detected: (Detected by) PIMS/Photoionisation Mass Spec(troscopy). High intensity light beams.	6	ALLOW alkenes react with ozone/ alkene ozonolysis. ALLOW They react very rapidly/they are highly reactive therefore very short lived

Question		Answer	Mark	Guidance	
		QWC: Linking very quick reactions of Criegee biradicals with the fact they have two unpaired electrons. \checkmark	$\mathbf{1}$	Please indicate QWC mark using red cross or green tick on the right of the pencil icon on the answer screen.	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

